High porosity and light weight graphene foam heat sink and phase change material container for thermal management
Artikel i vetenskaplig tidskrift, 2020

During the last decade, graphene foam emerged as a promising high porosity 3-dimensional (3D) structure for various applications. More specifically, it has attracted significant interest as a solution for thermal management in electronics. In this study, we investigate the possibility to use such porous materials as a heat sink and a container for a phase change material (PCM). Graphene foam (GF) was produced using chemical vapor deposition (CVD) process and attached to a thermal test chip using sintered silver nanoparticles (Ag NPs). The thermal conductivity of the graphene foam reached 1.3 W m(-1)K(-1), while the addition of Ag as a graphene foam silver composite (GF/Ag) enhanced further its effective thermal conductivity by 54%. Comparatively to nickel foam, GF and GF/Ag showed lower junction temperatures thanks to higher effective thermal conductivity and a better contact. A finite element model was developed to simulate the fluid flow through the foam structure model and showed a positive and a non-negligible contributions of the secondary microchannel within the graphene foam. A ratio of 15 times was found between the convective heat flux within the primary and secondary microchannel. Our paper successfully demonstrates the possibility of using such 3D porous material as a PCM container and heat sink and highlight the advantage of using the carbon-based high porosity material to take advantage of its additional secondary porosity.

computational fluid dynamics

thermal management

graphene foam

silver nanoparticles

DRT-joule heating

phase change materials

Författare

Abdelhafid Zehri

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Majid Kabiri Samani

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Martí Gutierrez Latorre

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Andreas Nylander

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Torbjörn Nilsson

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Yifeng Fu

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Nan Wang

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Lilei Ye

SHT Smart High-Tech

Johan Liu

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Nanotechnology

0957-4484 (ISSN) 1361-6528 (eISSN)

Vol. 31 42 424003

Förbättrade cementbaserad ytskydd/reparation materialer med utnyttjande av två-dimensionella material

Formas (FR-2017/0009), 2018-01-01 -- 2020-12-31.

Styrkeområden

Produktion

Ämneskategorier

Keramteknik

Materialkemi

Annan materialteknik

DOI

10.1088/1361-6528/aba029

PubMed

32597397

Mer information

Senast uppdaterat

2020-10-08