Numerical Frameworks for Laser-Induced Cavitation: Is Interface Supersaturation a Plausible Primary Nucleation Mechanism?
Artikel i vetenskaplig tidskrift, 2020

Crystallization has been observed in laser-induced cavities in saturated solutions, but the mechanisms behind nucleation of crystals are not entirely clear. A hypothesis is that high solution supersaturation during the bubble growth period triggers the nucleation. Because of small spatiotemporal scales of the cavitation event, the supersaturation is very difficult to measure experimentally. To test the nucleation hypothesis, we perform a two-dimensional axisymmetric direct numerical simulation of an experimentally observed laser-induced cavitation event with crystallization. We demonstrate a significant degree of supersaturation and argue that the nucleation hypothesis is indeed plausible. To analyze factors that lead to a high supersaturation, we develop a comprehensive one-dimensional model for spherical laser-induced cavities. We conduct an extensive investigation on how the solute solubility, solute diffusivity, laser pulse energy, and superheated liquid volume affect the supersaturation. We show that high supersaturation is possible under a range of relevant conditions but not readily obtained for all solutions and laser setups. Guidelines are provided to identify if a specific solution or laser setup may attain high supersaturation. The insights obtained and the numerical methods formulated in this work can be applied to assess and design new laser-induced cavitation setups that allow for precise control of the duration and degree of the supersaturation



Optical tweezers


Niklas Hidman

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Gaetano Sardina

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Dario Maggiolo

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Srdjan Sasic

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Crystal Growth & Design

1528-7483 (ISSN) 1528-7505 (eISSN)

Vol. 20 11 7276-7290

Förstå och modellera turbulens skapad av bubblor

Vetenskapsrådet (VR) (2017-05031), 2018-01-01 -- 2021-12-31.



Organisk kemi

Den kondenserade materiens fysik



Mer information

Senast uppdaterat