Automatically Learning Formal Models: An Industrial Case from Autonomous Driving Development
Paper i proceeding, 2020
Though formal model-based engineering techniques can help guarantee correctness, challenges exist in widespread industrial adoption. One among them is the model construction problem. Manual construction of formal models is expensive, error-prone, and intractable for large systems. Automating model construction would be a great enabler for the use of formal methods to guarantee software correctness and thereby for safe deployment of autonomous vehicles. Such automated techniques can be beneficial in software design, re-engineering, and reverse engineering. In this industrial case study, we apply active learning techniques to obtain formal models from an existing autonomous driving software (in development) implemented in MATLAB. We demonstrate the feasibility of active automata learning algorithms for automotive industrial use. Furthermore, we discuss the practical challenges in applying automata learning and possible directions for integrating automata learning into automotive software development workflow.
model-based engineering
automata learning
autonomous driving
active learning
formal methods
Författare
Yuvaraj Selvaraj
Chalmers, Elektroteknik, System- och reglerteknik
Ashfaq Hussain Farooqui
Chalmers, Elektroteknik, System- och reglerteknik
Ghazaleh Panahandeh
Zenuity AB
Martin Fabian
Chalmers, Elektroteknik, System- och reglerteknik
Proceedings of the ACM/IEEE Joint Conference on Digital Libraries
1552-5996 (ISSN)
9781450381352 (ISBN)
Virtual Event, Canada,
Automatiskt bedömning av autonoma fordons korrekthet (Auto-CAV)
VINNOVA (2017-05519), 2018-03-01 -- 2021-12-31.
Ämneskategorier
Programvaruteknik
Inbäddad systemteknik
Reglerteknik
Datavetenskap (datalogi)
DOI
10.1145/3417990.3421262