Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes
Artikel i vetenskaplig tidskrift, 2018

Carbon fibres (CFs), originally made for use in structural composites, have also been demonstrated as

high capacity Li-ion battery negative electrodes. Consequently, CFs can be used as structural

electrodes; simultaneously carrying mechanical load and storing electrical energy in multifunctional

structural batteries. To date, all CF microstructural designs have been generated to realise a targeted

mechanical property, e.g. high strength or stiffness, based on a profound understanding of the

relationship between the graphitic microstructure and the mechanical performance. Here we further

advance this understanding by linking CF microstructure to the lithium insertion mechanism and the

resulting electrochemical capacity. Different PAN-based CFs ranging from intermediate- to highmodulus

types with distinct differences in microstructure are characterised in detail by SEM and HRTEMand

electrochemical methods. Furthermore, the mechanism of Li-ion intercalation during

charge/discharge is studied by in situ confocal Raman spectroscopy on individual CFs. RamanGband

analysis reveals a Li-ion intercalation mechanism in the high-modulus fibre reminiscent of that in

crystalline graphite. Also, the combination of a relatively low capacity of the high-modulus

CFs (ca. 150 mAh g−1) is shown to be due to that the formation of a staged structure is frustrated by an

obstructive turbostratic disorder. In contrast, intermediate-modulus CFs, which have significantly

higher capacities (ca. 300 mAh g−1), have Raman spectra indicating a Li-ion insertion mechanism

closer to that of partly disordered carbons. Based on these findings, CFs with improved multifunctional

performance can be realised by tailoring the graphitic order and crystallite sizes.

TEM

Li-ion intercalation

PAN-based carbon fibres

Raman spectroscopy

SEM

Structural battery composites

Författare

Athmane Boulaoued

Chalmers, Fysik, Kondenserade materiens fysik

Giulia Fredi

Universita degli Studi di Trento

Joachim Wallenstein

Chalmers, Fysik, Kondenserade materiens fysik

Steffen Jeschke

Chalmers, Fysik, Kondenserade materiens fysik

Masoud Rashidi

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Fang Liu

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Ross Harnden

Kungliga Tekniska Högskolan (KTH)

Johan Hagberg

Kungliga Tekniska Högskolan (KTH)

Dan Zenkert

Kungliga Tekniska Högskolan (KTH)

Göran Lindbergh

Kungliga Tekniska Högskolan (KTH)

Patrik Johansson

Chalmers, Fysik, Kondenserade materiens fysik

L. Stievano

Université de Montpellier

Leif Asp

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Multifunctional Materials

23997532 (eISSN)

Vol. 1 1 015003

Structural pOweR CompositEs foR futurE civil aiRcraft (SORCERER)

Europeiska kommissionen (EU) (EC/H2020/738085), 2017-02-01 -- 2020-02-28.

Skadetålighet hos strukturella batterier

Amerikanska flygvapnets kontor för strategisk forskning (AFOSR) (FA9550-17-1-0338), 2017-09-30 -- 2020-09-29.

Strukturella kompositbatterier för energieffektiva fordon

Energimyndigheten (37712-1), 2013-11-27 -- 2017-11-26.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Energi

Materialvetenskap

Ämneskategorier (SSIF 2011)

Materialkemi

Annan kemiteknik

Annan materialteknik

Kompositmaterial och -teknik

Den kondenserade materiens fysik

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1088/2399-7532/aab707

Mer information

Senast uppdaterat

2024-01-03