Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes
Artikel i vetenskaplig tidskrift, 2018
high capacity Li-ion battery negative electrodes. Consequently, CFs can be used as structural
electrodes; simultaneously carrying mechanical load and storing electrical energy in multifunctional
structural batteries. To date, all CF microstructural designs have been generated to realise a targeted
mechanical property, e.g. high strength or stiffness, based on a profound understanding of the
relationship between the graphitic microstructure and the mechanical performance. Here we further
advance this understanding by linking CF microstructure to the lithium insertion mechanism and the
resulting electrochemical capacity. Different PAN-based CFs ranging from intermediate- to highmodulus
types with distinct differences in microstructure are characterised in detail by SEM and HRTEMand
electrochemical methods. Furthermore, the mechanism of Li-ion intercalation during
charge/discharge is studied by in situ confocal Raman spectroscopy on individual CFs. RamanGband
analysis reveals a Li-ion intercalation mechanism in the high-modulus fibre reminiscent of that in
crystalline graphite. Also, the combination of a relatively low capacity of the high-modulus
CFs (ca. 150 mAh g−1) is shown to be due to that the formation of a staged structure is frustrated by an
obstructive turbostratic disorder. In contrast, intermediate-modulus CFs, which have significantly
higher capacities (ca. 300 mAh g−1), have Raman spectra indicating a Li-ion insertion mechanism
closer to that of partly disordered carbons. Based on these findings, CFs with improved multifunctional
performance can be realised by tailoring the graphitic order and crystallite sizes.
TEM
Li-ion intercalation
PAN-based carbon fibres
Raman spectroscopy
SEM
Structural battery composites
Författare
Athmane Boulaoued
Chalmers, Fysik, Kondenserade materiens fysik
Giulia Fredi
Universita degli Studi di Trento
Joachim Wallenstein
Chalmers, Fysik, Kondenserade materiens fysik
Steffen Jeschke
Chalmers, Fysik, Kondenserade materiens fysik
Masoud Rashidi
Chalmers, Industri- och materialvetenskap, Material och tillverkning
Fang Liu
Chalmers, Industri- och materialvetenskap, Material och tillverkning
Ross Harnden
Kungliga Tekniska Högskolan (KTH)
Johan Hagberg
Kungliga Tekniska Högskolan (KTH)
Dan Zenkert
Kungliga Tekniska Högskolan (KTH)
Göran Lindbergh
Kungliga Tekniska Högskolan (KTH)
Patrik Johansson
Chalmers, Fysik, Kondenserade materiens fysik
L. Stievano
Université de Montpellier
Leif Asp
Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik
Multifunctional Materials
23997532 (eISSN)
Vol. 1 1 015003Structural pOweR CompositEs foR futurE civil aiRcraft (SORCERER)
Europeiska kommissionen (EU) (EC/H2020/738085), 2017-02-01 -- 2020-02-28.
Skadetålighet hos strukturella batterier
Amerikanska flygvapnets kontor för strategisk forskning (AFOSR) (FA9550-17-1-0338), 2017-09-30 -- 2020-09-29.
Strukturella kompositbatterier för energieffektiva fordon
Energimyndigheten (37712-1), 2013-11-27 -- 2017-11-26.
Drivkrafter
Hållbar utveckling
Styrkeområden
Transport
Energi
Materialvetenskap
Ämneskategorier (SSIF 2011)
Materialkemi
Annan kemiteknik
Annan materialteknik
Kompositmaterial och -teknik
Den kondenserade materiens fysik
Infrastruktur
Chalmers materialanalyslaboratorium
DOI
10.1088/2399-7532/aab707