Wheel–rail impact loads and axle bending stress simulated for generic distributions and shapes of discrete wheel tread damage
Artikel i vetenskaplig tidskrift, 2021

Wheel–rail impact loads generated by discrete wheel tread irregularities may result in high dynamic bending stresses in the wheelset axle, leading to a decrease in component life and an elevated risk for fatigue failure. In this paper, a versatile and cost-efficient method to simulate the vertical dynamic interaction between a wheelset and railway track, accounting for generic distributions and shapes of wheel tread damage, is presented. The wheelset (comprising two wheels, axle and any attached equipment for braking and power transmission) and track with two discretely supported rails are described by three-dimensional finite element (FE) models. The coupling between the two wheel‒rail contacts (one on each wheel) via the wheelset axle and via the sleepers is considered. The simulation of dynamic vehicle–track interaction is carried out in the time domain using a convolution integral approach, while the non-linear wheel–rail normal contact is solved using Kalker’s variational method. Wheelset designs that are non-symmetric with respect to the centre of the axle, track support conditions that are non-symmetric with respect to the centre of the track, as well as non-symmetric distributions of tread damage on the two wheels (or irregularities on the two rails) can be studied. Time-variant stresses are computed for the locations in the wheelset axle which are prone to fatigue. Based on Green’s functions for stress established using the wheelset FE model, this is achieved in a post-processing step. An extensive parametric study has been performed where wheel–rail impact loads and axle stresses have been computed for different distributions and sizes of tread damage as well as for different train speeds.

wheel tread damage

axle bending stress

wheelset design

simulation

Dynamic wheel–rail interaction

Författare

Michele Maglio

Chalmers, Mekanik och maritima vetenskaper, Dynamik

Astrid Pieringer

Chalmers, Arkitektur och samhällsbyggnadsteknik, Teknisk akustik

Jens Nielsen

Chalmers, Mekanik och maritima vetenskaper, Dynamik

Tore V Vernersson

Chalmers, Mekanik och maritima vetenskaper, Dynamik

Journal of Sound and Vibration

0022-460X (ISSN) 1095-8568 (eISSN)

Vol. 502 116085

In2Track-2 (CHARMEC EU19)

Europeiska kommissionen (EU) (EC/H2020/826255), 2018-11-01 -- 2021-10-31.

Trafikverket, 2018-11-01 -- 2021-10-31.

Styrkeområden

Transport

Ämneskategorier (SSIF 2011)

Teknisk mekanik

Farkostteknik

DOI

10.1016/j.jsv.2021.116085

Mer information

Senast uppdaterat

2021-05-04