Predictive energy management of hybrid electric vehicles via multi-layer control
Artikel i vetenskaplig tidskrift, 2021

This paper presents predictive energy management of hybrid electric vehicles (HEVs) via computationally efficient multi-layer control. First, we formulate an optimization problem by considering driveability and a penalty for using service brakes in the objective function to optimize gear, engine on/off, engine clutch state, and power-split decisions subject to constraints on the battery state of charge (SOC) and charge sustenance. Then, we split it into two control layers, including a supervisory control in a higher layer and a local power-split control in a lower layer. In the supervisory layer, a gear and powertrain mode manager (PM) is designed, and optimal gear, engine on/off and clutch states are obtained by using a combination of dynamic programming (DP) and Pontryagin's minimum principle (PMP). Moreover, a real-time iteration Secant method is proposed to calculate optimal battery costate such that the constraint on charge sustenance is satisfied. In the local controller layer, a linear quadratic tracking method (LQT) is used to optimally split power between the engine and the electric machine and keep battery SOC within its bounds.

real-time iteration Secant method

Engines

multi-layer control

Ice

Gears

model predictive control (MPC)

State of charge

Hybrid electric vehicles

Energy management

Batteries

Hybrid electric vehicle (HEV)

Författare

Maryam Razi

Chalmers, Elektroteknik, System- och reglerteknik

Nikolce Murgovski

Chalmers, Elektroteknik, System- och reglerteknik

Tomas McKelvey

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Torsten Wik

Chalmers, Elektroteknik, System- och reglerteknik

IEEE Transactions on Vehicular Technology

0018-9545 (ISSN) 1939-9359 (eISSN)

Vol. 70 7 6485-6499 9435008

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Energi

Ämneskategorier

Rymd- och flygteknik

Reglerteknik

Annan elektroteknik och elektronik

DOI

10.1109/TVT.2021.3081346

Mer information

Senast uppdaterat

2022-04-05