Modelling of Mass Transfer Resistances in Non-uniformly Washcoated Monolith Reactors
Artikel i vetenskaplig tidskrift, 2021

There are various methodologies to account for mass transfer within non-uniformly distributed washcoats in monolith reactors in 1D models (axially). However, 1+1D models (axially/radially) fail to capture local variations in mass transfer from different coating thicknesses or cracks. In this paper, we present a novel way to account for local material properties in a washcoated monolith reactor. The suggested method uses an existing 1+1D modelling framework and sectionalizes the washcoat into multiple tangential segments which are solved independently. Intelligent gravimetric analysis and scanning electron microscopy are used in combination to calculate local effective diffusivity as an input for each simulation. The new model is compared to the original 1+1D model using NO light-off simulations. The new model predicted increased conversion at elevated temperatures, where mass transfer limitations are present, due to the higher porosity in the corners. The simulation time for each model was similar due to the parallelizable nature of the new model.

Non-uniformity

Sectionalizing

Catalytic washcoat

Parallel computing

Pore diffusion

Författare

Magnus Walander

Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem

Jonas Sjöblom

Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem

Derek Creaser

Chalmers, Kemi och kemiteknik, Kemiteknik

B. Agri

Volvo Cars

N. Löfgren

Volvo Cars

Stefanie Tamm

Johnson Matthey AB

J. Edvardsson

Johnson Matthey AB

Emission Control Science and Technology

21993629 (ISSN) 21993637 (eISSN)

Vol. 7 2 153-162

Minimerade emissioner med hjälp av validerad katalysatormodellering

Energimyndigheten (2016-006185,P42814-1), 2017-01-01 -- 2020-12-31.

Ämneskategorier

Teknisk mekanik

Annan fysik

Bioinformatik (beräkningsbiologi)

DOI

10.1007/s40825-020-00178-8

Mer information

Senast uppdaterat

2024-01-03