Quantitative predictions of thermodynamic hysteresis: Temperature-dependent character of the phase transition in Pd–H
Artikel i vetenskaplig tidskrift, 2022

The thermodynamics of phase transitions between phases that are size-mismatched but coherent differs from conventional stress-free thermodynamics. Most notably, in open systems such phase transitions are always associated with hysteresis. In spite of experimental evidence for the relevance of these effects in technologically important materials such as Pd hydride, a recipe for first-principles-based atomic-scale modeling of coherent, open systems has been lacking. Here, we develop a methodology for quantifying phase boundaries, hysteresis, and coherent interface free energies using density-functional theory, alloy cluster expansions, and Monte Carlo simulations in a constrained ensemble. We apply this approach to Pd–H and show that the phase transition changes character above approximately 400 K, occurring with an at all times spatially homogeneous hydrogen concentration, i.e., without coexistence between the two phases. Our results are consistent with experimental observations but reveal aspects of hydride formation in Pd nanoparticles that have not yet been accessible in experiment.

Phase coexistence

Thermodynamics

Strain energy

Hysteresis

Cluster expansion

Författare

Magnus Rahm

Chalmers, Fysik, Kondenserad materie- och materialteori

Joakim Löfgren

Chalmers, Fysik, Material- och ytteori

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

Acta Materialia

1359-6454 (ISSN)

Vol. 227 117697

Plastic Plasmonics

Stiftelsen för Strategisk forskning (SSF) (RMA15-0052), 2016-05-01 -- 2022-06-30.

Fasbeteende och elektroniska egenskaper hos halogenid-perovskiter från simulering på atomskala

Vetenskapsrådet (VR) (2020-04935), 2020-12-01 -- 2024-11-30.

Nanolegeringar för plasmoniska tillämpningar

Vetenskapsrådet (VR) (2015-04153), 2016-01-01 -- 2019-12-31.

Analys och modelleringstjänst för tekniska material studerad med neutroner

Vetenskapsrådet (VR) (2018-06482), 2018-11-01 -- 2020-12-31.

Datorbaserad materialutveckling för transportegenskaper

Knut och Alice Wallenbergs Stiftelse, 2015-07-01 -- 2020-06-30.

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Ämneskategorier

Fysikalisk kemi

Annan fysik

Den kondenserade materiens fysik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1016/j.actamat.2022.117697

Mer information

Senast uppdaterat

2023-12-21