Variational Bayesian EM for SLAM
Paper i proceeding, 2015

Designing accurate, robust and cost-effective systems is an important aspect of the research on self-driving vehicles. Radar is a common part of many existing automotive solutions and it is robust to adverse weather and lighting conditions, as such it can play an important role in the design of a self-driving vehicle. In this paper, a radar-based simultaneous localization and mapping (SLAM) algorithm using variational Bayesian expectation maximization (VBEM) is presented. The VBEM translates the inference problem to an optimization one. It provides an efficient and powerful method to estimate the unknown data association variables as well as the map of the environment as perceived by a radar and the unknown trajectory of the vehicle.

Författare

Maryam Fatemi

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Lennart Svensson

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Lars Hammarstrand

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Malin Lundgren

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015, Cancun, Mexico, 13-16 Dec. 2015

501-504 7383846
978-1-4799-1963-5 (ISBN)

Ämneskategorier

Signalbehandling

DOI

10.1109/CAMSAP.2015.7383846

ISBN

978-1-4799-1963-5

Mer information

Senast uppdaterat

2022-04-20