Computational Design of Alloy Nanostructures for Optical Sensing of Hydrogen
Artikel i vetenskaplig tidskrift, 2022

Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd-Au-H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventually the optical spectrum. At the single particle level, the shift of the plasmon peak position with hydrogen concentration (i.e., the "optical" sensitivity) is approximately constant at 180 nm/c(H) for nanodisk diameters of greater than or similar to 100 nm. For smaller particles, the optical sensitivity is negative and increases with decreasing diameter, due to the emergence of a second peak originating from coupling between a localized surface plasmon and interband transitions. In addition to tracking peak position, the onset of extinction as well as extinction at fixed wavelengths is considered. We carefully compare the simulation results with experimental data and assess the potential sources for discrepancies. Invariably, the results suggest that there is an upper bound for the optical sensitivity that cannot be overcome by engineering composition and/or geometry. While the alloy composition has a limited impact on optical sensitivity, it can strongly affect H uptake and consequently the "thermodynamic" sensitivity and the detection limit. Here, it is shown how the latter can be improved by compositional engineering and even substantially enhanced via the formation of an ordered phase that can be synthesized at higher hydrogen partial pressures.

palladium alloys

nanoparticles

nanoplasmonics

hydrogen sensing

dielectric function

localized surface plasmon resonance

Författare

Pernilla Ekborg-Tanner

Chalmers, Fysik, Kondenserad materie- och materialteori

Magnus Rahm

Chalmers, Fysik, Kondenserad materie- och materialteori

Victor Rosendal

Student vid Chalmers

Maria Bancerek

Uniwersytet Warszawski

Tomasz Antosiewicz

Uniwersytet Warszawski

Chalmers, Fysik, Bionanofotonik

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

ACS Applied Nano Materials

25740970 (eISSN)

Vol. 5 8 10225-10236

Plasmon-exciton coupling at the attosecond-subnanometer scale: Tailoring strong light-matter interactions at room temperature

Knut och Alice Wallenbergs Stiftelse (2019.0140), 2020-07-01 -- 2025-06-30.

Single Particle Catalysis in Nanoreactors (SPCN)

Knut och Alice Wallenbergs Stiftelse (KAW2015.0057), 2016-01-01 -- 2020-12-31.

Plastic Plasmonics

Stiftelsen för Strategisk forskning (SSF) (RMA15-0052), 2016-05-01 -- 2022-06-30.

Analys och modelleringstjänst för tekniska material studerad med neutroner

Vetenskapsrådet (VR) (2018-06482), 2018-11-01 -- 2020-12-31.

Fasbeteende och elektroniska egenskaper hos halogenid-perovskiter från simulering på atomskala

Vetenskapsrådet (VR) (2020-04935), 2020-12-01 -- 2024-11-30.

Styrkeområden

Nanovetenskap och nanoteknik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1021/acsanm.2c01189

Relaterade dataset

Data for "Computational Design of Alloy Nanostructures for Optical Sensing of Hydrogen" [dataset]

DOI: 10.5281/zenodo.5833928

Mer information

Senast uppdaterat

2024-01-03