Time-Resolved Thickness and Shape-Change Quantification using a Dual-Band Nanoplasmonic Ruler with Sub-Nanometer Resolution
Artikel i vetenskaplig tidskrift, 2022

Time-resolved measurements of changes in the size and shape of nanobiological objects and layers are crucial to understand their properties and optimize their performance. Optical sensing is particularly attractive with high throughput and sensitivity, and label-free operation. However, most state-of-the-art solutions require intricate modeling or multiparameter measurements to disentangle conformational or thickness changes of biomolecular layers from complex interfacial refractive index variations. Here, we present a dual-band nanoplasmonic ruler comprising mixed arrays of plasmonic nanoparticles with spectrally separated resonance peaks. As electrodynamic simulations and model experiments show, the ruler enables real-time simultaneous measurements of thickness and refractive index variations in uniform and heterogeneous layers with sub-nanometer resolution. Additionally, nanostructure shape changes can be tracked, as demonstrated by quantifying the degree of lipid vesicle deformation at the critical coverage prior to rupture and supported lipid bilayer formation. In a broader context, the presented nanofabrication approach constitutes a generic route for multimodal nanoplasmonic optical sensing.

supported lipid bilayer

nanorulers

biosensors

biomolecules

nanoplasmonic sensors

conformation

Författare

Ferry Nugroho

Universitas Indonesia

Chalmers, Fysik, Kemisk fysik

Vrije Universiteit Amsterdam

D. Switlik

Uniwersytet Warszawski

Antonius Armanious

Eidgenössische Technische Hochschule Zürich (ETH)

Padraic O'Reilly

Chalmers, Fysik, Kemisk fysik

Iwan Darmadi

Chalmers, Fysik, Kemisk fysik

Sara Nilsson

Chalmers, Fysik, Kemisk fysik

Vladimir Zhdanov

Russian Academy of Sciences

Chalmers, Fysik

Fredrik Höök

Chalmers, Fysik, Nano- och biofysik

Tomasz Antosiewicz

Chalmers, Fysik, Bionanofotonik

Uniwersytet Warszawski

Christoph Langhammer

Chalmers, Fysik, Kemisk fysik

ACS Nano

1936-0851 (ISSN) 1936-086X (eISSN)

Vol. 16 10 15814-15826

Rambidrag inom utlysningen "Materials Science 2015"

Stiftelsen för Strategisk forskning (SSF) (RMA15-0052), 2016-05-01 -- 2021-06-30.

Ämneskategorier

Fysikalisk kemi

Atom- och molekylfysik och optik

Annan fysik

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1021/acsnano.2c04948

PubMed

36083800

Mer information

Senast uppdaterat

2024-03-07