Novel Results on Output-Feedback LQR Design
Artikel i vetenskaplig tidskrift, 2023

This paper provides novel developments in output-feedback stabilization for linear time-invariant systems within the linear quadratic regulator (LQR) framework. First, we derive the necessary and sufficient conditions for output-feedback stabilizability in connection with the LQR framework. Then, we propose a novel iterative Newton's method for output-feedback LQR design and a computationally efficient modified approach that requires solving only a Lyapunov equation at each iteration step. We show that the proposed modified approach guarantees convergence from a stabilizing state-feedback to a stabilizing output-feedback solution and succeeds in solving high dimensional problems where other, state-of-the-art methods, fail. Finally, numerical examples illustrate the effectiveness of the proposed methods.

Newton method

linear time-invariant system

Regulators

linear quadratic regulator

Electrical engineering

Symmetric matrices

output-feedback

Controller design

Linear matrix inequalities

stability

Sufficient conditions

Newton's method

Convergence

Författare

Adrian Ilka

Water Construction Company

Nikolce Murgovski

Chalmers, Elektroteknik, System- och reglerteknik

IEEE Transactions on Automatic Control

0018-9286 (ISSN) 1558-2523 (eISSN)

Vol. 68 9 5187-5200

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Signalbehandling

DOI

10.1109/TAC.2022.3218560

Mer information

Senast uppdaterat

2023-09-21