Multidimensional Constellation Shaping for Coherent Optical Communication Systems
Doktorsavhandling, 2022
To study geometric shaping, we explore multidimensional lattice-based constellations. These constellations provide a regular structure with fast and low-complexity encoding and decoding. We show the possibility of transmitting and detecting constellations with a size of more than 10^{28} points, which can be done without a look-up table to store the constellation points. Moreover, we experimentally realize our proposed multidimensional modulation formats in long-haul optical communication systems.
Finally, we investigate the performance of probabilistically shaped quadrature amplitude modulation and compare it with uniform cross quadrature amplitude modulation in the presence of transmitter impairments, and with uniform quadrature amplitude modulation in links where higher-order modulation formats co-propagate with on-off keying wavelength channels.
lattice-based constellations
geometric shaping
probabilistic shaping
multidimensional modulation format
Voronoi constellation
constellation shaping
optical communications
coherent receiver
Författare
Ali Mirani
Chalmers, Mikroteknologi och nanovetenskap, Fotonik
Lattice-based geometric shaping
European Conference on Optical Communication, ECOC,;(2020)
Paper i proceeding
Low-complexity geometric shaping
Journal of Lightwave Technology,;Vol. 39(2021)p. 363-371
Artikel i vetenskaplig tidskrift
Physical Realizations of Multidimensional Voronoi Constellations in Optical Communication Systems
Journal of Lightwave Technology,;Vol. 41(2023)p. 5557-5563
Artikel i vetenskaplig tidskrift
Capacity of phase-sensitively preamplified optical links at low signal-to-noise ratio
2022 European Conference on Optical Communication, ECOC 2022,;(2022)
Paper i proceeding
Comparison of uniform cross QAM and probabilistically shaped QAM formats under the impact of transmitter impairments
IET Conference Publications,;(2019)
Paper i proceeding
Performance of Probabilistic Shaping Coherent Channels in Hybrid Systems
International Conference on Transparent Optical Networks,;Vol. 2020-July(2020)p. 1-3
Paper i proceeding
Usually, in communication theory, the transmitted information is represented with discrete points known as symbols. When the symbols are transmitted over the channel, different noise sources distort the signal, and what we receive is different than what we transmitted. Because of these noise sources, the received samples appear as spherical clouds on the receiver side which can overlap with each other. The purpose of coding and modulation is to reduce the error probability because of this overlap and to increase the information rate that can be transmitted over the channel.
The goal of this thesis is to propose energy-efficient modulations that can outperform the conventional modulations already used in optical communication systems. We show that by increasing the dimension of the symbols, an improved sensitivity can be achieved to tolerate the channel noise. Therefore, the optical signal can propagate for a longer distance over the fiber link.
Kommunikation över optiska kanaler med skurfel
Vetenskapsrådet (VR) (2021-03709), 2022-01-01 -- 2025-12-31.
Polarisationsanpassad fiberoptisk transmission
Vetenskapsrådet (VR) (2015-04239), 2016-01-01 -- 2019-12-31.
Signalformning i optisk datatransmission – bortom gausskanalen
Vetenskapsrådet (VR) (2017-03702), 2018-01-01 -- 2021-12-31.
Brusfria optiska faskänsliga förstärkare och dess tillämpningar
Vetenskapsrådet (VR) (2015-00535), 2016-01-01 -- 2025-12-31.
Frigöra full fiberoptisk kapacitet
Knut och Alice Wallenbergs Stiftelse (KAW 2018.0090), 2019-07-01 -- 2024-06-30.
Kopplade fiberoptiska kanaler
Vetenskapsrådet (VR) (2019-04078), 2019-12-01 -- 2023-11-30.
Styrkeområden
Informations- och kommunikationsteknik
Drivkrafter
Hållbar utveckling
Innovation och entreprenörskap
Ämneskategorier
Telekommunikation
Atom- och molekylfysik och optik
Kommunikationssystem
Elektroteknik och elektronik
Fundament
Grundläggande vetenskaper
Infrastruktur
C3SE (Chalmers Centre for Computational Science and Engineering)
Lärande och undervisning
Pedagogiskt arbete
ISBN
978-91-7905-775-6
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5241
Utgivare
Chalmers
Kollektorn, MC2 department, Kemivägen 9, Chalmers
Opponent: David Millar, Infinera corp., Canada