A synthetic population of Sweden: datasets of agents, households, and activity-travel patterns
Artikel i vetenskaplig tidskrift, 2023

A synthetic population is a simplified microscopic representation of an actual population. Statistically representative at the population level, it provides valuable inputs to simulation models (especially agent-based models) in research areas such as transportation, land use, economics, and epidemiology. This article describes the datasets from the Synthetic Sweden Mobility (SySMo) model using the state-of-art methodology, including machine learning (ML), iterative proportional fitting (IPF), and probabilistic sampling. The model provides a synthetic replica of over 10 million Swedish individuals (i.e., agents), their household characteristics, and activity-travel plans. This paper briefly explains the methodology for the three datasets: Person, Households, and Activity-travel patterns. Each agent contains socio-demographic attributes, such as age, gender, civil status, residential zone, personal income, car ownership, employment, etc. Each agent also has a household and corresponding attributes such as household size, number of children ≤ 6 years old, etc. These characteristics are the basis for the agents’ daily activity-travel schedule, including type of activity, start-end time, duration, sequence, the location of each activity, and the travel mode between activities.

Synthetic population

Activity schedules

Agent-based modelling

Daily activity pattern

Författare

Çaglar Tozluoglu

Chalmers, Rymd-, geo- och miljövetenskap, Fysisk resursteori

Swapnil Vilas Dhamal

Chalmers, Rymd-, geo- och miljövetenskap, Fysisk resursteori

Sonia Yeh

Chalmers, Rymd-, geo- och miljövetenskap, Fysisk resursteori

Frances Sprei

Chalmers, Rymd-, geo- och miljövetenskap, Fysisk resursteori

Yuan Liao

Chalmers, Rymd-, geo- och miljövetenskap, Fysisk resursteori

Madhav Marathe

University of Virginia

Christopher L. Barrett

University of Virginia

Devdatt Dubhashi

Chalmers, Data- och informationsteknik, Data Science och AI

Data in Brief

23523409 (eISSN)

Vol. 48 109209

En ny framtid för mobilitet: Synthetic Sweden, ett ramverk för studier av omställningen av transportsektorn till självkörande, delad och elektrisk mobilitet

Formas (2018-01768), 2019-01-01 -- 2023-11-30.

Styrkeområden

Transport

Ämneskategorier (SSIF 2011)

Transportteknik och logistik

DOI

10.1016/j.dib.2023.109209

Relaterade dataset

A synthetic population of Sweden: datasets of agents, households, and activity-travel patterns [dataset]

DOI: 10.17632/9n29p7rmn5

Mer information

Senast uppdaterat

2023-06-01