Towards an accurate estimation of heat flux distribution in metal cutting by machine learning
Paper i proceeding, 2023

This study presents a machine learning-based approach for inverse identification of heat flux distribution on the rake face of the cutting tools in machining. This approach includes temperature measurements from thermocouples embedded in the tool and heat transfer finite element (FE) simulations to create the data required to train the ML model. The identified heat flux distribution is compared with the distribution from FE machining simulations for validation. The results show a clear potential to estimate the heat flux distribution in machining more efficiently by using an ML-based inverse approach.

Metal cutting

Heat transfer simulation

Heat flux

Temperature

Machining

Machine Learning

Inverse identification

Författare

Ahmet Semih Ertürk

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Amir Malakizadi

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Ragnar Larsson

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Procedia CIRP

22128271 (eISSN)

Vol. 117 359-364

19th CIRP Conference on Modeling of Machining Operations, CMMO 2023
Karlsruhe, Germany,

En simuleringsbaserad för guide för prediktion av skärbarhet

VINNOVA (2016-05397), 2017-09-01 -- 2020-11-27.

Ämneskategorier

Maskinteknik

DOI

10.1016/j.procir.2023.03.061

Mer information

Senast uppdaterat

2023-07-26