Long-term stability of molecular doped epigraphene quantum Hall standards: single elements and large arrays (R K/236 ≈ 109 Ω)
Artikel i vetenskaplig tidskrift, 2023

In this work we investigate the long-term stability of epitaxial graphene (epigraphene) quantum Hall resistance standards, including single devices and an array device composed of 236 elements providing R K/236 ≈ 109 Ω, with R K the von Klitzing constant. All devices utilize the established technique of chemical doping via molecular dopants to achieve homogenous doping and control over carrier density. However, optimal storage conditions and the long-term stability of molecular dopants for metrological applications have not been widely studied. In this work we aim to identify simple storage techniques that use readily available and cost-effective materials which provide long-term stability for devices without the need for advanced laboratory equipment. The devices are stored in glass bottles with four different environments: ambient, oxygen absorber, silica gel desiccant, and oxygen absorber/desiccant mixture. We have tracked the carrier densities, mobilities, and quantization accuracies of eight different epigraphene quantum Hall chips for over two years. We observe the highest stability (i.e. lowest change in carrier density) for samples stored in oxygen absorber/desiccant mixture, with a relative change in carrier density below 0.01% per day and no discernable degradation of quantization accuracy at the part-per-billion level. This storage technique yields a comparable stability to the currently established best storage method of inert nitrogen atmosphere, but it is much easier to realize in practice. It is possible to further optimize the mixture of oxygen absorber/desiccant for even greater stability performance in the future. We foresee that this technique can allow for simple and stable long-term storage of polymer-encapsulated molecular doped epigraphene quantum Hall standards, removing another barrier for their wide-spread use in practical metrology.

stability

resistance

graphene

quantum Hall effect

Författare

Naveen Shetty

2D-Tech

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

T. Bergsten

RISE Research Institutes of Sweden

Gunnar Eklund

RISE Research Institutes of Sweden

Samuel Lara Avila

National Physical Laboratory (NPL)

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Sergey Kubatkin

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Karin Cedergren

RISE Research Institutes of Sweden

Hans He

RISE Research Institutes of Sweden

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Metrologia

0026-1394 (ISSN) 16817575 (eISSN)

Vol. 60 5 055009

Plasmon-exciton coupling at the attosecond-subnanometer scale: Tailoring strong light-matter interactions at room temperature

Knut och Alice Wallenbergs Stiftelse (2019.0140), 2020-07-01 -- 2025-06-30.

Kvantkriticitet och ny kvantmateria i tvådimensionella Dirac-material

Vetenskapsrådet (VR) (2021-05252), 2022-01-01 -- 2025-12-31.

2D material-baserad teknologi för industriella applikationer (2D-TECH)

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

VINNOVA (2024-03852), 2023-11-01 -- 2029-12-31.

Ämneskategorier (SSIF 2011)

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1088/1681-7575/acf3ec

Mer information

Senast uppdaterat

2025-03-05