Detecting abnormality of battery lifetime from first-cycle data using few-shot learning
Artikel i vetenskaplig tidskrift, 2024
Lithium-ion battery
Early-stage detection
Few-shot learning
Big data
Lifetime abnormality
Författare
Xiaopeng Tang
Hong Kong University of Science and Technology
Xin Lai
University of Shanghai for Science and Technology
Changfu Zou
Chalmers, Elektroteknik, System- och reglerteknik
Yuanqiang Zhou
Hong Kong University of Science and Technology
Jiajun Zhu
University of Shanghai for Science and Technology
Yuejiu Zheng
University of Shanghai for Science and Technology
Furong Gao
Hong Kong University of Science and Technology
Advanced Science
2198-3844 (ISSN) 21983844 (eISSN)
Vol. 11 69 2305315Datadriven prediktion av batteriåldring
Energimyndigheten (50187-1), 2020-08-01 -- 2023-07-31.
Drivkrafter
Hållbar utveckling
Innovation och entreprenörskap
Styrkeområden
Transport
Energi
Fundament
Grundläggande vetenskaper
Ämneskategorier (SSIF 2011)
Annan elektroteknik och elektronik
DOI
10.1002/advs.202305315
Relaterade dataset
Battery lifetime data [dataset]
URI: https://drive.google.com/drive/folders/1y1g-XGoiupV_wnkyADmbJRX-pKoVX3J3?usp=drive_link