Detection and localisation of multiple in-core perturbations with neutron noise-based self-supervised domain adaptation
Paper i proceeding, 2021
location of multiple and simultaneously occurring perturbations in the frequency domain. A diffusion-based core simulation tool has been employed to provide simulated training data for two reactors. Additionally, we work towards the application of the aforementioned approach to real measurements, introducing a self-supervised domain adaptation procedure to align the representation distributions of simulated and real plant measurements.
neutron noise
machine learning
core monitoring
core diagnostics
Författare
A. Durrant
University of Lincoln
G. Leontidis
University of Lincoln
S. Kollias
University of Lincoln
L.A. Torres
Universidad Politecnica de Madrid
C. Montalvo
Universidad Politecnica de Madrid
Antonios Mylonakis
Chalmers, Fysik, Subatomär, högenergi- och plasmafysik
Christophe Demaziere
Chalmers, Fysik, Subatomär, högenergi- och plasmafysik
Paolo Vinai
Chalmers, Fysik, Subatomär, högenergi- och plasmafysik
Proc. Int. Conf. Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C2021)
9781713886310 (ISBN)
Online, USA,
Core monitoring techniques and experimental validation and demonstration (CORTEX)
Europeiska kommissionen (EU) (EC/H2020/754316), 2017-09-01 -- 2021-08-31.
Styrkeområden
Energi
Ämneskategorier
Annan fysik
DOI
10.13182/M&C21-33650
ISBN
9781713886310