Ultralow 1/f noise in epigraphene devices
Artikel i vetenskaplig tidskrift, 2024

We report the lowest recorded levels of 1/ f noise for graphene-based devices, at the level of S V / V 2 = S I / I 2 = 4.4 × 10 − 16 (1/Hz), measured at f = 10 Hz ( S V / V 2 = S I / I 2 < 10 − 16 1/Hz for f > 100 Hz) in large-area epitaxial graphene on silicon carbide (epigraphene) Hall sensors. This performance is made possible through the combination of high material quality, low contact resistance achieved by edge contact fabrication process, homogeneous doping, and stable passivation of the graphene layer. Our study explores the nature of 1/ f noise as a function of carrier density and device geometry and includes data from Hall sensors with device area range spanning over six orders of magnitude, with characteristic device length ranging from L = 1 μm to 1 mm. In optimized graphene Hall sensors, we demonstrate arrays to be a viable route to improve further the magnetic field detection: a simple parallel connection of two devices displays record-high magnetic field sensitivity at room temperature, with minimum detectable magnetic field levels down to B min = 9.5 nT/√Hz. The remarkable low levels of 1/ f noise observed in epigraphene devices hold immense capacity for the design and fabrication of scalable epigraphene-based sensors with exceptional performance.

Författare

Naveen Shetty

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Federico Chianese

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Hans He

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

RISE Research Institutes of Sweden

Johanna Huhtasaari

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

S. Ghasemi

Universitat Politecnica de Catalunya

Kasper Moth-Poulsen

Institucio Catalana de Recerca i Estudis Avancats

Universitat Politecnica de Catalunya

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

Sergey Kubatkin

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Thilo Bauch

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Samuel Lara Avila

National Physical Laboratory (NPL)

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Applied Physics Letters

0003-6951 (ISSN) 1077-3118 (eISSN)

Vol. 124 9 093503

Plasmon-exciton coupling at the attosecond-subnanometer scale: Tailoring strong light-matter interactions at room temperature

Knut och Alice Wallenbergs Stiftelse (2019.0140), 2020-07-01 -- 2025-06-30.

Ämneskategorier (SSIF 2011)

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1063/5.0185890

Mer information

Senast uppdaterat

2024-03-22