Data-driven rolling eco-speed optimization for autonomous vehicles
Artikel i vetenskaplig tidskrift, 2024

In urban settings, fluctuating traffic conditions and closely spaced signalized intersections lead to frequent emergency acceleration, deceleration, and idling in vehicles. These maneuvers contribute to elevated energy use and emissions. Advances in vehicle-to-vehicle and vehicle-to-infrastructure communication technologies allow autonomous vehicles (AVs) to perceive signals over long distances and coordinate with other vehicles, thereby mitigating environmentally harmful maneuvers. This paper introduces a data-driven algorithm for rolling eco-speed optimization in AVs aimed at enhancing vehicle operation. The algorithm integrates a deep belief network with a back propagation neural network to formulate a traffic state perception mechanism for predicting feasible speed ranges. Fuel consumption data from the Argonne National Laboratory in the United States serves as the basis for establishing the quantitative correlation between the fuel consumption rate and speed. A spatiotemporal network is subsequently developed to achieve eco-speed optimization for AVs within the projected speed limits. The proposed algorithm results in a 12.2% reduction in energy consumption relative to standard driving practices, without a significant extension in travel time.

speed optimization

energy saving

autonomous vehicles

data-driven learning

Författare

Ying Yang

Shanghai University

Kun Gao

Chalmers, Arkitektur och samhällsbyggnadsteknik, Geologi och geoteknik

Shaohua Cui

Yongjie Xue

Beihang University

Arsalan Najafi

Chalmers, Arkitektur och samhällsbyggnadsteknik, Geologi och geoteknik

Jelena Andric

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Volvo Group

Frontiers of Engineering Management

20957513 (ISSN) 20960255 (eISSN)

Vol. In Press

Ämneskategorier

Transportteknik och logistik

Reglerteknik

DOI

10.1007/s42524-023-0284-y

Mer information

Senast uppdaterat

2024-04-19