Fast, accurate and lightweight sequential simulation-based inference using Gaussian locally linear mappings
Artikel i vetenskaplig tidskrift, 2024

Bayesian inference for complex models with an intractable likelihood can be tackled using algorithms performing many calls to computer simulators. These approaches are collectively known as "simulation-based inference" (SBI). Recent SBI methods have made use of neural networks (NN) to provide approximate, yet expressive constructs for the unavailable likelihood function and the posterior distribution. However, the trade-off between accuracy and computational demand leaves much space for improvement. In this work, we propose an alternative that provides both approximations to the likelihood and the posterior distribution, using structured mixtures of probability distributions. Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, even for multimodal posteriors, while exhibiting a much smaller computational footprint. We illustrate our results on several benchmark models from the SBI literature and on a biological model of the translation kinetics after mRNA transfection.

mixture models

simulation-based inference

SBI

Bayesian inference

likelihood-free

Författare

Henrik Häggström

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Pedro Rodrigues

Institut National de Recherche en Informatique et en Automatique (INRIA)

Geoffroy Oudoumanessah

Institut National de Recherche en Informatique et en Automatique (INRIA)

Florence Forbes

Institut National de Recherche en Informatique et en Automatique (INRIA)

Umberto Picchini

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Transactions on Machine Learning Research

2835-8856 (ISSN)

Statistisk inferensteori och stokastisk modellering av proteinveckning

Vetenskapsrådet (VR) (2013-5167), 2014-01-01 -- 2019-12-31.

Djupinlärning och likelihood-fri Bayesiansk inferens för stokastiska modeller

Chalmers AI-forskningscentrum (CHAIR), 2020-01-01 -- 2024-12-31.

Vetenskapsrådet (VR) (2019-03924), 2020-01-01 -- 2023-12-31.

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Datavetenskap (datalogi)

Mer information

Senast uppdaterat

2024-07-09