Splitting schemes for FitzHugh–Nagumo stochastic partial differential equations
Artikel i vetenskaplig tidskrift, 2024

We design and study splitting integrators for the temporal discretization of the stochastic FitzHugh-Nagumo system. This system is a model for signal propagation in nerve cells where the voltage variable is the solution of a one-dimensional parabolic PDE with a cubic nonlinearity driven by additive space-time white noise. We first show that the numerical solutions have finite moments. We then prove that the splitting schemes have, at least, the strong rate of convergence 1/4. Finally, numerical experiments illustrating the performance of the splitting schemes are provided.

splitting schemes

stochastic partial differential equations

FitzHugh-Nagumo equation

strong error estimates

Författare

Charles-Edouard Brehier

Universite de Pau et des Pays de L'Adour

David Cohen

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Giuseppe Giordano

Universita degli Studi di Salerno

Discrete and Continuous Dynamical Systems - Series B

1531-3492 (ISSN)

Vol. 29 1 214-244

Numerisk analys och simulering av PDE med slumpmässig dispersion

Vetenskapsrådet (VR) (2018-04443), 2019-01-01 -- 2022-12-31.

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Signalbehandling

DOI

10.3934/dcdsb.2023094

Mer information

Senast uppdaterat

2024-07-04