Physics informed data-driven near-wall modelling for lattice Boltzmann simulation of high Reynolds number turbulent flows
Artikel i vetenskaplig tidskrift, 2024

Data-driven approaches offer novel opportunities for improving the performance of turbulent flow simulations, which are critical to wide-ranging applications from wind farms and aerodynamic designs to weather and climate forecasting. However, current methods for these simulations often require large amounts of data and computational resources. While data-driven methods have been extensively applied to the continuum Navier-Stokes equations, limited work has been done to integrate these methods with the highly scalable lattice Boltzmann method. Here, we present a physics-informed neural network framework for improving lattice Boltzmann-based simulations of near-wall turbulent flow. Using a small amount of data and integrating physical constraints, our model accurately predicts flow behaviour at a wide range of friction Reynolds numbers up to 1.0 × 10^6. In contradistinction with other models that use direct numerical simulation datasets, this approach reduces data requirements by three orders of magnitude and allows for sparse grid configurations. Our work broadens the scope of lattice Boltzmann applications, enabling efficient large-scale simulations of turbulent flow in diverse contexts.

machine learning

Författare

Xiao Xue

University College London (UCL)

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Shuo Wang

Huadong Yao

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Lars Davidson

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Peter V. Coveney

University College London (UCL)

Universiteit Van Amsterdam

Communications Physics

23993650 (eISSN)

Vol. 7 1 338

Multidisciplinära avancerade beräkningar: Fluiddynamik, Aeroakustik, Strukturdynamik 2 (MultFAS2)

VINNOVA (2023-01202), 2023-07-01 -- 2024-08-31.

Multidisciplinära avancerade beräkningar: Fluiddynamik,Aeroakustik, Strukturdynamik (MultFAS)

VINNOVA (PO1600297547), 2019-11-01 -- 2022-10-31.

Design av de aerodynamiska egenskaperna för ett elektriskt flygplan

Energi, 2021-01-01 -- 2022-12-31.

Transport, 2021-01-01 -- 2022-12-31.

GEneric Multidiscaplinary optimization for sail INstallation on wInd-assisted ships (GEMINI)

Trafikverket (2023/32107), 2023-09-01 -- 2026-08-31.

Styrkeområden

Transport

Energi

Ämneskategorier (SSIF 2011)

Rymd- och flygteknik

Strömningsmekanik och akustik

Datavetenskap (datalogi)

DOI

10.1038/s42005-024-01832-1

Mer information

Senast uppdaterat

2024-10-28