Inference on an interacting diffusion system with application to in vitro glioblastoma migration
Artikel i vetenskaplig tidskrift, 2024

Glioblastoma multiforme is a highly aggressive form of brain cancer, with a median survival time for diagnosed patients of 15 months. Treatment of this cancer is typically a combination of radiation, chemotherapy and surgical removal of the tumour. However, the highly invasive and diffuse nature of glioblastoma makes surgical intrusions difficult, and the diffusive properties of glioblastoma are poorly understood. In this paper, we introduce a stochastic interacting particle system as a model of in vitro glioblastoma migration, along with a maximum likelihood-algorithm designed for inference using microscopy imaging data. The inference method is evaluated on in silico simulation of cancer cell migration, and then applied to a real data set. We find that the inference method performs with a high degree of accuracy on the in silico data, and achieve promising results given the in vitro data set.

glioblastoma

diffusion

statistical inference

agent based modelling

mathematical biology

Författare

Gustav Lindwall

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Philip Gerlee

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Mathematical Medicine and Biology

1477-8599 (ISSN) 14778602 (eISSN)

Vol. 41 3

Focus on glioblastoma: using patient-derived cell lines to decipher tumour expansion and evaluate new treatments

Stiftelsen för Strategisk forskning (SSF) (SB16-0066), 2019-01-01 -- 2021-12-31.

Ämneskategorier (SSIF 2011)

Cellbiologi

Beräkningsmatematik

Sannolikhetsteori och statistik

Styrkeområden

Hälsa och teknik

DOI

10.1093/imammb/dqae010

Mer information

Skapat

2024-12-12