Clinical application of machine-based deep learning in patients with radiologically presumed adult-type diffuse glioma grades 2 or 3
Artikel i vetenskaplig tidskrift, 2024

Background. Radiologically presumed diffuse lower-grade glioma (dLGG) are typically non or minimal enhancing tumors, with hyperintensity in T2w-images. The aim of this study was to test the clinical usefulness of deep learning (DL) in IDH mutation prediction in patients with radiologically presumed dLGG.
Methods. Three hundred and fourteen patients were retrospectively recruited from 6 neurosurgical departments in Sweden, Norway, France, Austria, and the United States. Collected data included patients' age, sex, tumor molecular characteristics (IDH, and 1p19q), and routine preoperative radiological images. A clinical model was built using multivariable logistic regression with the variables age and tumor location. DL models were built using MRI data only, and 4 DL architectures used in glioma research. In the final validation test, the clinical model and the best DL model were scored on an external validation cohort with 155 patients from the Erasmus Glioma Dataset.
Results. The mean age in the recruited and external cohorts was 45.0 (SD 14.3) and 44.3 years (SD 14.6). The cohorts were rather similar, except for sex distribution (53.5% vs 64.5% males, P-value = .03) and IDH status (30.9% vs 12.9% IDH wild-type, P-value <.01). Overall, the area under the curve for the prediction of IDH mutations in the external validation cohort was 0.86, 0.82, and 0.87 for the clinical model, the DL model, and the model combining both models' probabilities.
Conclusions. In their current state, when these complex models were applied to our clinical scenario, they did not seem to provide a net gain compared to our baseline clinical model.

magnetic resonance imaging

deep learning

grade 2

isocitrate dehydrogenase

grade 3

glioma

Författare

Tomas Gomez Vecchio

Göteborgs universitet

Alice Neimantaite

Göteborgs universitet

Erik Thurin

Göteborgs universitet

Julia Furtner

Danube Private Univ

Ole Solheim

St Olavs Hosp

Norges teknisk-naturvitenskapelige universitet

Johan Pallud

GHU Paris Psychiat & Neurosci

Mitchel Berger

Univ Calif San Francisco, Dept Neurosurg

Georg Widhalm

Medizinische Universität Wien

Jiri Bartek

Rigshospitalet

Karolinska universitetssjukhuset

Karolinska Institutet

Ida Haeggstroem

Göteborgs universitet

Irene Yu-Hua Gu

Chalmers, Elektroteknik

Göteborgs universitet

Asgeir Store Jakola

Göteborgs universitet

NEURO-ONCOLOGY ADVANCES

2632-2498 (eISSN)

Vol. 6 1 vdae192

Ämneskategorier (SSIF 2011)

Neurologi

Cancer och onkologi

DOI

10.1093/noajnl/vdae192

PubMed

39659833

Mer information

Senast uppdaterat

2025-01-08