Snort Meets Transformers: Accelerating Transformer-Based Network Traffic Classification for Real-Time Performance
Paper i proceeding, 2025
In this work, we propose a cascading model that leverages the strengths of both approaches. During training, a transformer-based model learns traffic patterns, which are then extracted using SHAP analysis to enhance the knowledge base of a signature-based IDS. In deployment, the IDS handles routine classifications, while only complex cases are escalated to the transformer model. Our experi- ments combining the analysis of ET-BERT with Snort demonstrate a four-fold performance improvement over running only ET-BERT without compromising false positive or false negative rates.
Network Pre-trained Models
Network Traffic Analysis
Intrusion Detection Systems (IDS)
Författare
Mohamed Hashim Changrampadi
Nätverk och System
Magnus Almgren
Nätverk och System
Pablo Picazo-Sanchez
Chalmers, Data- och informationsteknik, Informationssäkerhet
Ahmed Ali-Eldin Hassan
Nätverk och System
EUROSEC 2025 - Proceedings of the 2025 European Workshop on System Security
Rotterdam, Netherlands,
RICS2: Säkra IT-system för drift och övervakning av samhällskritisk infrastruktur
Myndigheten för samhällsskydd och beredskap, 2021-01-01 -- 2023-12-31.
Styrkeområden
Informations- och kommunikationsteknik
Infrastruktur
C3SE (-2020, Chalmers Centre for Computational Science and Engineering)
Ämneskategorier (SSIF 2025)
Datorsystem
DOI
10.1145/3722041.3723098