Aging-Aware Classification and Optimal Usage of Electric Vehicle Batteries
Doktorsavhandling, 2025
Specifically, a transferable physics-informed framework is proposed for battery degradation mode estimation and phase detection, and a quantile regression forests (QRF) model is proposed for battery lifetime early prediction, which enables aging-aware classification of EV batteries. For optimal usage of EV batteries in second-life BESS applications, an economic stage cost function is proposed to account for both the grid and the battery degradation cost, and an automatic kernel search method is extended to construct the best composite kernel for Gaussian process (GP) regression models in two battery applications.The fine-tuning strategy is proven to be effective in improving online battery degradation mode estimation and phase detection performance in the target first-life application. The QRF model can provide cycle life point prediction with high accuracy, and uncertainty quantification as the width of prediction intervals. The implicit policy incorporating historical operational data and "fixed" forecasted electricity price achieves the best economic performance, and GP regression models with the best kernel can provide better prediction performance in the two battery applications.
In summary, machine learning methods are proposed in this thesis to enable aging-aware classification in first-life applications and optimal usage in second-life applications of EV batteries, which hopefully facilitates the market adoption of second-life BESSs based on new and used EV batteries.
energy management
Lithium-ion batteries
battery degradation diagnosis
interpretable physics-informed machine learning
battery lifetime prediction
Författare
Huang Zhang
Chalmers, Elektroteknik, System- och reglerteknik
Comparative Study of Aging-Aware Control Strategies for Grid-Connected Photovoltaic Battery Systems
Proceedings of the IEEE Conference on Decision and Control,;(2024)p. 3501-3507
Paper i proceeding
Battery capacity knee-onset identification and early prediction using degradation curvature
Journal of Power Sources,;Vol. 608(2024)
Artikel i vetenskaplig tidskrift
Scenario-Aware Machine Learning Pipeline for Battery Lifetime Prediction
2024 European Control Conference, ECC 2024,;(2024)p. 212-217
Paper i proceeding
Comparative Analysis of Battery Cycle Life Early Prediction Using Machine Learning Pipeline
IFAC-PapersOnLine,;Vol. 56(2023)p. 3757-3763
Paper i proceeding
Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data
IEEE Transactions on Transportation Electrification,;Vol. 9(2023)p. 2669-2682
Artikel i vetenskaplig tidskrift
Huang Zhang, Xixi Liu, Faisal Altaf, and Torsten Wik, “A Practitioner’s Guide to Automatic Kernel Search for Gaussian Processes in Battery Applications”
Huang Zhang, Xixi Liu, Faisal Altaf, and Torsten Wik, “A Transferable Physics-Informed Framework for Battery Degradation Diagnosis, Knee-Onset Detection and Knee Prediction”
The results of this thesis show that aging-aware classification of EV batteries can be enabled using a transfer learning-based physics-informed framework and a battery lifetime early prediction model, while optimal usage of EV batteries can be enabled using optimal control policies that consider battery degradation and Gaussian process (GP) regression models with auto-=composite kernels that predict battery capacity and residual load in grid-connected microgrids.
Batteriåldringsmedvetet tekno-ekonomiskt beslutsstöd för optimal användning av fordonsbatterier över hela deras livslängd
Energimyndigheten, 2024-07-01 -- 2025-12-31.
Klassificering och optimal hantering av 2nd life xEV-batterier
Energimyndigheten (45540-1), 2018-10-15 -- 2023-06-30.
Ämneskategorier (SSIF 2025)
Elkraftsystem och -komponenter
Artificiell intelligens
Reglerteknik
ISBN
978-91-8103-200-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5658
Utgivare
Chalmers
Lecture Hall EF, EDIT Building, Hörsalsvägen 11, Gothenburg
Opponent: Prof. David Howey, Department of Engineering Science, Oxford University, United Kingdom
Relaterade dataset
Synthetic Degradation Dataset of 12 LG M50 Batteries [dataset]
DOI: 10.17632/ry6g9cc5bw.2