Using Neural Network for Improving an Explicit Algebraic Stress Model in 2D Flow
Paper i proceeding, 2025
CFD solver and the NN model are fully coupled. The Reynolds stresses are used in the momentum equations and the production term in the k and omega equations.
It is found that when training the NN model, the target data cannot only be taken from DNS. The reason is that the stress-strain relation and the turbulent kinetic energy of the DNS data are different from those of the k-omega$ model. Hence, the target data are taken both from DNS and a k-omega simulation.
The new EARSM-NN model is used for predicting channel flow at Re_tau = 2 000, 5 200 and 10 000$ and flat-plate boundary layer
at 2 500 < Re_theta < 8 000. The EARSM-NN model gives much better results than the standard EARSM.
Författare
Lars Davidson
Chalmers, Mekanik och maritima vetenskaper, Strömningslära
Proceedings of the Cambridge Unsteady Flow Symposium 2024
978-3-031-69035-8 (ISBN)
Cambridge, United Kingdom,
Strategiskt forskningsprojekt på Chalmers inom hydro- och aerodynamik
Stiftelsen Chalmers tekniska högskola, 2019-01-01 -- 2023-12-31.
Drivkrafter
Hållbar utveckling
Styrkeområden
Transport
Ämneskategorier (SSIF 2025)
Strömningsmekanik
DOI
10.1007/978-3-031-69035-8_2