Guided Gaussians: Enhancing 3D Occupancy Estimation with Sparse Sensor Priors
Paper i proceeding, 2025

We introduce a new initialization method for 3D Gaussians used in 3D occupancy estimation, a key task in autonomous driving that involves identifying semantic elements in a vehicle’s surroundings and accurately locating them in space. Our approach leverages distance sensor data, such as from lidar or radar, to place 3D Gaussians using farthest point sampling, ensuring coverage of meaningful scene areas while avoiding redundant representation of empty space. Unlike prior work that either densely voxelizes the scene or spreads 3D Gaussians uniformly, our method uses real sensor signals to drive object-centric placement, resulting in a more efficient and precise representation of the environment. We further enhance performance through a multimodal attention mechanism between 3D Gaussian features and distance sensor inputs, improving the integration of geometry and semantics. Our results show that this lightweight yet effective strategy consistently achieves state-of-the-art performance in 3D occupancy estimation. This contributes to a scalable solution for real-world deployment in autonomous vehicle perception systems, highlighting the potential of sensor-informed initialization for spatial reasoning in dynamic environments.

Författare

Amer Mustajbasic

Chalmers, Data- och informationsteknik, Data Science och AI

Han Fu

Lunds universitet

Jialu Xu

Lunds universitet

Shuangshuang Chen

Volvo Cars

Erik Stenborg

Zenseact AB

Selpi Selpi

Chalmers, Data- och informationsteknik, Data Science och AI

ECAI 2025, 28th European Conference on Artificial Intelligence, October 25-30, 2025, Including 14th Conference on Prestigious Applications of Intelligent Systems (PAIS 2025)

28th European Conference on Artificial Intelligence, ECAI 2025
Bologna, Italy,

Djupt multimodalt lärande för fordonstillämpningar

VINNOVA (2023-00763), 2023-09-01 -- 2027-09-01.

Styrkeområden

Informations- och kommunikationsteknik

Transport

Ämneskategorier (SSIF 2025)

Robotik och automation

Datorgrafik och datorseende

Datavetenskap (datalogi)

Artificiell intelligens

Infrastruktur

Chalmers e-Commons (inkl. C3SE, 2020-)

Mer information

Senast uppdaterat

2025-08-28