ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks
Paper i proceeding, 2025

Out-of-distribution (OOD) detection in deep learning has traditionally been framed as a binary task, where samples are either classified as belonging to the known classes or marked as OOD, with little attention given to the semantic relationships between OOD samples and the in-distribution (ID) classes. We propose a framework for detecting and classifying OOD samples in a given class hierarchy. Specifically, we aim to predict OOD data to their correct internal nodes of the class hierarchy, whereas the known ID classes should be predicted as their corresponding leaf nodes. Our approach leverages the class hierarchy to create a probabilistic model and we implement this model by using networks trained for ID classification at multiple hierarchy depths. We conduct experiments on three datasets with predefined class hierarchies and show the effectiveness of our method. Our code is available at https://github.com/walline/prohoc.

class hierarchy

out-of-distribution detection

Författare

Erik Wallin

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Saab

Fredrik Kahl

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Lars Hammarstrand

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition

10636919 (ISSN)

20612-20621
979-8-3315-4365-5 (ISBN)

IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR)
Nashville TN, USA,

Robust och precis semi-övervakad inlärning

Wallenberg AI, Autonomous Systems and Software Program, 2020-08-25 -- 2024-08-23.

Ämneskategorier (SSIF 2025)

Datorseende och lärande system

Datavetenskap (datalogi)

Signalbehandling

DOI

10.1109/CVPR52734.2025.01919

Mer information

Senast uppdaterat

2025-09-24