Improving 3D Cellular Positioning Integrity with Bayesian RAIM
Artikel i vetenskaplig tidskrift, 2025

Ensuring positioning integrity amid faulty measurements is crucial for safety-critical applications, making receiver autonomous integrity monitoring (RAIM) indispensable. This paper introduces a Bayesian RAIM algorithm with a streamlined architecture for 3D cellular positioning. Unlike traditional frequentist-type RAIM algorithms, it computes the exact posterior probability density function (PDF) of the position vector as a Gaussian mixture (GM) model using efficient message passing along a factor graph. This Bayesian approach retains all crucial information from the measurements, eliminates the need to discard faulty measurements, and results in tighter protection levels (PLs) in 3D space and 1D/2D subspaces that meet target integrity risk (TIR) requirements. Numerical simulations demonstrate that the Bayesian RAIM algorithm significantly outperforms a baseline algorithm, achieving over 50% PL reduction at a comparable computational cost.

Författare

Liqin Ding

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Ericsson AB

G. Seco-Granados

Universitat Autonoma de Barcelona (UAB)

Hyowon Kim

Chungnam National University

Russ Whiton

Volvo Group

Europeiska rymdorganisationen (ESA)

Erik Ström

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Jonas Sjöberg

Chalmers, Elektroteknik, System- och reglerteknik

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IEEE Transactions on Vehicular Technology

0018-9545 (ISSN) 1939-9359 (eISSN)

Vol. In Press

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Datavetenskap (datalogi)

DOI

10.1109/TVT.2025.3610075

Mer information

Senast uppdaterat

2025-10-06