Unsupervised Machine Learning Method for Stationary Sea State Clustering Based on Gaussian Wave Surface Elevation
Paper i proceeding, 2025

This study proposes a novel unsupervised machine learning framework to identify stationary sea states based on Gaussian wave surface elevation simulated using the Pierson-Moskowitz spectrum for fully developed seas. The proposed methodology consists of two main steps. First, the wavelet scattering transform is employed to extract features from the wave elevation time series, while multiple change point detection algorithms are used to estimate the expected number of stationary sea states (clusters). Next, a comparative analysis is conducted using various clustering algorithms approaches to determine their effectiveness in this specific application.

Stationary sea state

wavelet scattering

unsupervised machine learning

wave elevation.

clustering

temporal neighborhood coding

change points detection

Författare

Xiao Lang

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Yuhan Chen

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Mingyang Zhang

Shanghai Jiao Tong University

Chi Zhang

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Wengang Mao

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Proceedings of the International Offshore and Polar Engineering Conference

10986189 (ISSN) 15551792 (eISSN)


978-1-880653-74-6 (ISBN)

The Thirty-fifth (2025) International Ocean and Polar Engineering Conference
Seoul/Goyang, South Korea,

AI-förbättrade energieffektivitetsåtgärder för optimal fartygsdrift för att minska utsläppen av växthusgaser

VINNOVA (2021-02768), 2021-10-15 -- 2024-06-30.

PIANO - Physics Informed Machine Learning Architecture for Optimal Auxiliary Wind Propulsion

Trafikverket (2023/98101), 2024-10-01 -- 2027-09-30.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Ämneskategorier (SSIF 2025)

Marinteknik

Signalbehandling

Mer information

Senast uppdaterat

2025-10-24