Unsupervised Machine Learning Method for Stationary Sea State Clustering Based on Gaussian Wave Surface Elevation
Paper i proceeding, 2025

This study proposes a novel unsupervised machine learning framework to identify stationary sea states based on Gaussian wave surface elevation simulated using the Pierson-Moskowitz spectrum for fully developed seas. The proposed methodology consists of two main steps. First, the wavelet scattering transform is employed to extract features from the wave elevation time series, while multiple change point detection algorithms are used to estimate the expected number of stationary sea states (clusters). Next, a comparative analysis is conducted using various clustering algorithms approaches to determine their effectiveness in this specific application.

unsupervised machine learning

clustering

change points detection

wavelet scattering

wave elevation.

temporal neighborhood coding

Stationary sea state

Författare

Xiao Lang

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Yuhan Chen

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Mingyang Zhang

Chi Zhang

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Wengang Mao

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Proceedings of the International Offshore and Polar Engineering Conference

10986189 (ISSN) 15551792 (eISSN)


978-1-880653-74-6 (ISBN)

The Thirty-fifth (2025) International Ocean and Polar Engineering Conference
Seoul/Goyang, South Korea,

AI-förbättrade energieffektivitetsåtgärder för optimal fartygsdrift för att minska utsläppen av växthusgaser

VINNOVA (2021-02768), 2021-10-15 -- 2024-06-30.

PIANO - Physics Informed Machine Learning Architecture for Optimal Auxiliary Wind Propulsion

Trafikverket (2023/98101), 2024-10-01 -- 2027-09-30.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Ämneskategorier (SSIF 2025)

Marinteknik

Signalbehandling

Mer information

Skapat

2025-10-01