GPUMD 4.0: A high-performance molecular dynamics package for versatile materials simulations with machine-learned potentials
Reviewartikel, 2025

This paper provides a comprehensive overview of the latest stable release of the graphics processing units molecular dynamics (GPUMD) package, GPUMD 4.0. We begin with a brief review of its development history, starting from the initial version. We then discuss the theoretical foundations for the development of the GPUMD package, including the formulations of the interatomic force, virial and heat current for many-body potentials, the development of the highly efficient and flexible neuroevolution potential (NEP) method, the supported integrators and related operations, the various physical properties that can be calculated on the fly, and the GPUMD ecosystem. After presenting these functionalities, we review a range of applications enabled by GPUMD, particularly in combination with the NEP approach. Finally, we outline possible future development directions for GPUMD.

GPUMD

molecular dynamics

materials simulation

interatomic potential

machine-learned potential

Författare

Ke Xu

Bohai University

Hekai Bu

Wuhan University

Shuning Pan

Nanjing University

Eric Lindgren

Chalmers, Fysik, Kondenserad materie- och materialteori

Yongchao Wu

Beijing Institute of Technology

Yong Wang

Princeton Univ, Dept Chem

Nanjing University

Jiahui Liu

Beijing University of Technology

Keke Song

Beijing University of Technology

Bin Xu

Chinese Academy of Sciences

Yifan Li

Princeton Univ, Dept Chem

Tobias Hainer

Chalmers, Fysik, Kondenserad materie- och materialteori

Lucas Svensson

Chalmers, Fysik, Kondenserad materie- och materialteori

Julia Wiktor

Chalmers, Fysik, Kondenserad materie- och materialteori

Rui Zhao

Xinyu University

Hongfu Huang

Beihang University

Shuo Zhang

Jiangnan University

Zezhu Zeng

The University of Hong Kong

Bohan Zhang

Bohai University

Benrui Tang

Bohai University

Yang Xiao

Bohai University

Zihan Yan

Westlake Univ

Jiuyang Shi

Nanjing University

Zhixin Liang

Nanjing University

Junjie Wang

Nanjing University

Ting Liang

Chinese University of Hong Kong

Shuo Cao

Beijing University of Technology

Yanzhou Wang

Aalto-Yliopisto

Penghua Ying

Tel Aviv University

Nan Xu

Zhejiang University

Chengbing Chen

Guilin University of Electronic Technology

Yuwen Zhang

Eastern Inst Technol

Zherui Chen

Shenzhen University

Xin Wu

University of Tokyo

Wenwu Jiang

Wuhan University

Esmée Berger

Chalmers, Fysik, Kondenserad materie- och materialteori

Yanlong Li

Shandong Acad Sci

Shunda Chen

George Washington University

Alexander J. Gabourie

DeepSim Inc

Haikuan Dong

Bohai University

Shiyun Xiong

Guangdong University of Technology

Ning Wei

Jiangnan University

Yue Chen

The University of Hong Kong

Jianbin Xu

Chinese University of Hong Kong

Zhimei Sun

Beihang University

Tapio Ala-Nissila

Loughborough University

Aalto-Yliopisto

Ari Harju

Siemens Healthineers Co

Jincheng Zheng

Xiamen Univ Malaysia

Xiamen University

Pengfei Guan

Chinese Academy of Sciences

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

Jian Sun

Nanjing University

Wengen Ouyang

Wuhan University

Yanjing Su

Beijing University of Technology

Zheyong Fan

Bohai University

MATERIALS GENOME ENGINEERING ADVANCES

2940-9489 (ISSN) 2940-9497 (eISSN)

Vol. 3 3 e70028

Harnessing Localized Charges for Advancing Polar Materials Engineering (POLARISE)

Europeiska kommissionen (EU) (EC/HE/101162195), 2025-01-01 -- 2029-12-31.

Sveriges Neutronforskarskola - SwedNESS

Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2016-07-01 -- 2021-06-30.

Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2017-01-01 -- 2020-12-31.

Ämneskategorier (SSIF 2025)

Den kondenserade materiens fysik

DOI

10.1002/mgea.70028

Mer information

Senast uppdaterat

2025-10-17