Spectral Invariants of Integrable Polygons
Artikel i vetenskaplig tidskrift, 2025

An integrable polygon is one whose interior angles are fractions of π; that is to say of the form π n for positive integers n. We consider the Laplace spectrum on these polygons with the Dirichlet and Neumann boundary conditions, and we obtain new spectral invariants for these polygons. This includes new expressions for the spectral zeta function and zeta-regularized determinant as well as a new spectral invariant contained in the short-time asymptotic expansion of the heat trace. Moreover, we demonstrate relationships between the short-time heat trace invariants of general polygonal domains (not necessarily integrable) and smoothly bounded domains and pose conjectures and further related directions of investigation.

Polygonal billiard

Helmholtz equation

Zeta-regularized determinant

Laplace eigenvalues

Closed geodesic

Polygonal domain

Heat trace

Laplace spectrum

Spectral zeta function

Författare

Gustav Mårdby

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Julie Rowlett

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Journal of Fourier Analysis and Applications

1069-5869 (ISSN) 15315851 (eISSN)

Vol. 31 6 69

Ämneskategorier (SSIF 2025)

Subatomär fysik

DOI

10.1007/s00041-025-10202-6

Mer information

Senast uppdaterat

2025-11-14