GotEnzymes2: expanding coverage of enzyme kinetics and thermal properties
Artikel i vetenskaplig tidskrift, 2025

Enzyme kinetics are fundamental for understanding metabolism, yet experimentally measured parameters remain scarce. To address this gap, we introduce GotEnzymes2, a substantially expanded resource covering 10 765 species, 7.3 million enzymes, and 59.6 million unique entries. Compared with the first version, GotEnzymes2 now integrates both catalytic and thermal parameters, enabling unified predictions of kcat, Km,kcat/Km, optimal temperature, and melting temperature. This expansion markedly broadens species and enzyme coverage, creating the most comprehensive database of enzyme kinetic and stability parameters to date. To construct the resource, we systematically benchmarked state-of-the-art models for catalytic and thermal parameter prediction, and incorporated the best-performing strategies to ensure accuracy and generalizability. Altogether, GotEnzymes2 provides the community with a powerful resource for data-driven enzyme discovery, design, and engineering, with broad applications in systems biology, metabolic engineering, and synthetic biology. GotEnzymes2 is publicly accessible at https://metabolicatlas.org/gotenzymes.

Författare

Bingxue Lyu

Tsinghua University

Ke Wu

Tsinghua University

Yuanyuan Huang

Chinese Academy of Sciences

Petre Mihail Anton

Chalmers, Life sciences, Systembiologi

Xiongwen Li

Tsinghua University

Sandra Viknander

Chalmers, Life sciences, Systembiologi

Danish Anwer

Chalmers, Life sciences, Systembiologi

Yunfeng Yang

Tsinghua University

Diannan Lu

Tsinghua University

Eduard Kerkhoven

Chalmers, Life sciences, Systembiologi

Aleksej Zelezniak

Chalmers, Life sciences, Systembiologi

Dan Gao

Tsinghua University

Yu Chen

Chinese Academy of Sciences

Feiran Li

Tsinghua University

Nucleic Acids Research

0305-1048 (ISSN) 1362-4962 (eISSN)

Vol. In Press

MetaPlast: Nyttjande av "den mikrobiella mörka material" för att designa mikrobiella system som degraderar plast

Formas (2019-01403), 2020-01-01 -- 2023-12-31.

Låsa upp proteinproduktion potentialen hos icke-konventionella jästsvampar med artificiell intelligens

Vetenskapsrådet (VR) (2023-04254), 2024-01-01 -- 2027-12-31.

MetaPlast: Nyttjande av "den mikrobiella mörka material" för att designa mikrobiella system som degraderar plast

Formas (2019-01403), 2020-01-01 -- 2023-12-31.

Låsa upp proteinproduktion potentialen hos icke-konventionella jästsvampar med artificiell intelligens

Vetenskapsrådet (VR) (2023-04254), 2024-01-01 -- 2027-12-31.

Ämneskategorier (SSIF 2025)

Molekylärbiologi

DOI

10.1093/nar/gkaf1053

PubMed

41171142

Mer information

Senast uppdaterat

2025-11-24