Guided smoothing and control for diffusion processes
Artikel i vetenskaplig tidskrift, 2026

The smoothing distribution is the conditional distribution of the diffusion process in the space of trajectories given noisy observations made continuously in time. It is generally difficult to sample from this distribution. We use the theory of enlargement of filtrations to show that the conditional process has an additional drift term derived from the backward filtering distribution that is moving or guiding the process towards the observations. This term is intractable, but its effect can be equally introduced by replacing it with a heuristic, where importance weights correct for the discrepancy. From this Markov Chain Monte Carlo and sequential Monte Carlo algorithms are derived to sample from the smoothing distribution. The choice of the guiding heuristic is discussed from an optimal control perspective and evaluated. The results are tested numerically on a stochastic differential equation for reaction–diffusion.

Smoothing

Enlargement of filtration

Guided process

Hamilton–Jacobi–Bellman equation

Stochastic differential equation

Reaction–diffusion

Författare

Oskar Eklund

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Annika Lang

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Moritz Schauer

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Stochastic Processes and their Applications

0304-4149 (ISSN)

Vol. 192 104806

Time-Evolving Stochastic Manifolds (StochMan)

Europeiska kommissionen (EU) (EC/HE/101088589), 2023-09-01 -- 2028-08-31.

Efficienta approximeringsmetoder för stokastiska fält på mångfalder

Vetenskapsrådet (VR) (2020-04170), 2021-01-01 -- 2024-12-31.

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

DOI

10.1016/j.spa.2025.104806

Mer information

Senast uppdaterat

2025-11-21