Patch-Level Attribution of Multimodal Fracture Risk Prediction
Paper i proceeding, 2026

We present an annotation-free, multimodal approach to predict risk in the setting of osteoporosis-induced fractures, and to attribute this risk to specific vertebrae. Moreover, we demonstrate that using low-dose spine X-rays is sufficient to predict risk, but that predictions are drastically improved by including only image patches of vertebral bodies. Using visual explainability methods, risk can be attributed to individual vertebrae to increase interpretability of model decision making. We validate the results across multiple types fracture events using common evaluation metrics from survival analysis, such as the C-index and Brier score. Our approach shows significant improvements over the clinical baseline, and we demonstrate that the model may be used to identify high-risk patients, reinforcing potential clinical utility.

fracture risk

osteoporosis

survival analysis

multimodality

interpretability

Författare

Victor Wåhlstrand

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Erik Blomqvist

Student vid Chalmers

Jennifer Alvén

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Lisa Johansson

Göteborgs universitet

Mattias Lorentzon

Göteborgs universitet

Ida Häggström

Göteborgs universitet

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Lecture Notes in Computer Science

0302-9743 (ISSN) 1611-3349 (eISSN)

Vol. 16241 LNCS 421-431
9783032095121 (ISBN)

16th International Workshop on Machine Learning in Medical Imaging, MLMI 2025 was held in conjunction with the 28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Daejeon, South Korea,

Ämneskategorier (SSIF 2025)

Datorgrafik och datorseende

DOI

10.1007/978-3-032-09513-8_41

Mer information

Senast uppdaterat

2026-01-23