Ergodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems
Artikel i vetenskaplig tidskrift, 2017

Consider the utilization of a Lagrangian dual method which is convergent for consistent optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional ε-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.

subgradient algorithm

Lagrange dual

homogeneous Lagrangian function

ergodic primal sequence

inconsistent convex program


Magnus Önnheim

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Emil Gustavsson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Ann-Brith Strömberg

Chalmers, Matematiska vetenskaper, Matematik

Michael Patriksson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Torbjörn Larsson

Linköpings universitet

Mathematical Programming

0025-5610 (ISSN) 1436-4646 (eISSN)

Vol. 163 1-2 57-84

Icke-differentierbar konvex optimering - teori och lösningsmetodik

Chalmers, 1998-07-01 -- 2020-12-31.

Naturvetenskapliga Forskningsrådet, 1998-07-01 -- 2022-12-31.


Hållbar utveckling







Grundläggande vetenskaper



Mer information

Senast uppdaterat