Icke-differentierbar konvex optimering - teori och lösningsmetodik
Forskningsprojekt, 1998
– 2026
In a long series of projects, we study nonsmooth convex optimization problems. The topics studied include theory -mathematical and related complexity properties-as well as methodology development and convergence analyses. The problems studied are composed by linear and/or nonlinear convex functions and polyhedral and/or general convex sets. In particular, we study Lagrangean dual reformulations of convex optimization problems and methodology for their solution.
We have developed and analyzed generalized subgradient optimization methods. Further, since (Lagrangean) dual subgradient schemes do not automatically produce primal feasible solutions, we construct - at minor cost - an ergodic sequence of primal subproblem solutions which is shown to converge to the primal solution set. We have further elaborated with the construction of the primal ergodic sequences, in order to increase the convergence speed.
Deltagare
Ann-Brith Strömberg (kontakt)
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Emil Gustavsson
Matematik
Michael Patriksson
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Magnus Önnheim
Chalmers, Matematiska vetenskaper, Algebra och geometri
Samarbetspartners
Linköpings universitet
Linköping, Sweden
Finansiering
Naturvetenskapliga Forskningsrådet
Finansierar Chalmers deltagande under 1998–2022
Chalmers
Finansierar Chalmers deltagande under 1998–2020
Relaterade styrkeområden och infrastruktur
Transport
Styrkeområden
Energi
Styrkeområden
Grundläggande vetenskaper
Fundament