Analysis of the flow field from connection cones to monolith reactors
Artikel i vetenskaplig tidskrift, 2019

The connection cones between an exhaust pipe and an exhaust after-treatment system (EATS) will affect the flow into the first monolith. In this study, a new streamlined connection cone using non-uniform rational B-splines (NURBS) is applied to optimize the flow uniformity inside two different monoliths (a gasoline particulate filter and an un-coated monolith). NURBS and conventional cones were created using 3D printing with two different cone angles. The velocities after the monolith were collected to present the uniformity of the flows under different cones and different velocities. The test results indicate that NURBS cones exhibit better performance. Furthermore, all of the pressure drops of the bench test were measured and compared with those of the conventional cones, demonstrating that the NURBS cones can reduce the pressure drop by up to 12%. The computer fluid dynamics simulations depict detailed changes in the flow before and after entering the monolith. The results show that the NURBS cone avoids the generation of a recirculating zone associated with conventional cones and creates a more uniform flow, which causes a lower pressure drop. Meanwhile, the package structure of the NURBS cone can reduce the space requirements. Finally, the implications of the flow distributions are discussed.

Connection cone

Pressure drop

Flow uniformity

Non-uniform rational B-splines (NURBS)

Författare

Mingfei Mu

Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem

Beihang University

Jonas Sjöblom

Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Xinghu Li

Beihang University

Energies

1996-1073 (ISSN) 19961073 (eISSN)

Vol. 12 3 455

Ämneskategorier

Rymd- och flygteknik

Energiteknik

Strömningsmekanik och akustik

DOI

10.3390/en12030455

Mer information

Senast uppdaterat

2019-02-20