Lachesis: A Middleware for Customizing OS Scheduling of Stream Processing Queries
Paper i proceeding, 2021
Motivated by the above, we explore the feasibility and benefits of custom scheduling without alterations to SPEs but, instead, by orchestrating the OS scheduler (e.g., using nice and cgroup) to enforce the scheduling goals. We propose Lachesis, a standalone scheduling middleware, decoupled from any specific SPE, that can schedule multiple streaming applications, run in one or many nodes, and possibly multiple SPEs. Our evaluation with real-world and synthetic workloads, several SPEs and hardware setups, shows its benefits over default OS scheduling and other state-of-the-art schedulers: up to 75% higher throughput, and 1130x lower average latency once such SPEs reach their peak processing capacity.
operating systems
stream processing
scheduling
Författare
Dimitrios Palyvos-Giannas
Nätverk och System
Gabriele Mencagli
Universita di Pisa
Marina Papatriantafilou
Nätverk och System
Vincenzo Massimiliano Gulisano
Nätverk och System
Middleware 2021 - Proceedings of the 22nd International Middleware Conference
365-378
978-1-4503-8534-3 (ISBN)
Virtual Event, Canada,
AutoSPADA (Automotive Stream Processing and Distributed Analytics) OODIDA Phase 2
VINNOVA (2019-05884), 2020-03-12 -- 2022-12-31.
Molnbaserade produkter och produktion (FiC)
Stiftelsen för Strategisk forskning (SSF) (GMT14-0032), 2016-01-01 -- 2020-12-31.
INDEED
Chalmers, 2016-01-01 -- 2020-12-31.
STAMINA - GE
Göteborg Energi, Forskningsstiftelsen, 2017-01-01 -- 2021-12-31.
HAREN: Självdistribuerad och anpassningsbar dataströmningsanalys i dimman
Vetenskapsrådet (VR) (2016-03800), 2017-01-01 -- 2020-12-31.
Ämneskategorier (SSIF 2011)
Datorteknik
Datavetenskap (datalogi)
Datorsystem
Styrkeområden
Energi
DOI
10.1145/3464298.3493407
ISBN
9781450385343