Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes
Journal article, 2017

Cocoa butter (CB) extracted from cocoa beans mainly consists of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0–C18:1–C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0–C18:1–C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0–C18:1–C18:0), but CB supply is limited. Therefore, CB-like lipids (CBL, which are composed of POP, POS and SOS) are in great demand. Saccharomyces cerevisiae produces TAGs as storage lipids, which are also mainly composed of C16 and C18 fatty acids. However, POP, POS and SOS are not among the major TAG forms in yeast. TAG synthesis is mainly catalyzed by three enzymes: glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT). In order to produce CBL in S. cerevisiae, we selected six cocoa genes encoding GPAT, LPAT and DGAT potentially responsible for CB biosynthesis from the cocoa genome using a phylogenetic analysis approach. By expressing the selected cocoa genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some S. cerevisiae strains. The relative CBL content in three yeast strains harboring cocoa genes increased 190, 230 and 196% over the control strain, respectively; especially, the potential SOS content of the three yeast strains increased 254, 476 and 354% over the control strain. Moreover, one of the three yeast strains had a 2.25-fold increased TAG content and 6.7-fold higher level of CBL compared with the control strain. In summary, CBL production by S. cerevisiae were increased through expressing selected cocoa genes potentially involved in CB biosynthesis. © 2017, The Author(s).

Phylogenetic analysis

Cocoa butter-like lipids

Cell factories

TAG biosynthetic genes

Synthetic biology

Metabolic engineering

Author

Yongjun Wei

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Michael Gossing

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

David Bergenholm

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Verena Siewers

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Jens B Nielsen

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

AMB Express

2191-0855 (ISSN)

Vol. 7 1 34

Driving Forces

Sustainable development

Infrastructure

Chalmers Infrastructure for Mass spectrometry

Subject Categories

Food Engineering

Chemical Engineering

Areas of Advance

Life Science Engineering (2010-2018)

DOI

10.1186/s13568-017-0333-1

More information

Latest update

2/21/2018