AI-metoder för visionsbaserad terrestrisk lokalisation
Forskningsprojekt, 2026 – 2027

Modern transport systems rely heavily on satellite-based localization, making them vulnerable to disruptions such as GNSS jamming and spoofing. This project develops robust, interpretable, and infrastructure-light AI methods for localization using visual input, inertial data, and public maps such as OpenStreetMap. Focusing on diverse transport modes, i.e., pedestrians, bicycles, and trains, it builds modular algorithms for visual odometry, landmark recognition, and sensor fusion. The resulting open-source framework will support GNSS-resilient navigation, advancing safer, more autonomous, and sustainable mobility systems.

Deltagare

Marco L. Della Vedova (kontakt)

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Marco Dozza

Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet

Krister Wolff

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Finansiering

Chalmers

(Finansieringsperiod saknas)

Relaterade styrkeområden och infrastruktur

Transport

Styrkeområden

Mer information

Senast uppdaterat

2025-05-19