Accurate Phase-Noise Prediction for a Balanced Colpitts GaN HEMT MMIC Oscillator
Artikel i vetenskaplig tidskrift, 2013

This paper presents an X-band balanced Colpitts oscillator in GaN HEMT technology and a method to calculate its phase noise accurately. The method employs a low-frequency (LF) noise measurement and the oscillator waveforms from a harmonic-balance simulator. These data are post-calculated by Hajimiri's phase-noise model, in which the LF noise can be activated with a cyclo-stationary effect in the calculation of phase noise. Compared to commercial phase-noise simulation using predefined stationary noise, the calculation gives significantly improved phase-noise prediction in the 30-dB/decade region near carrier. The prediction is within 3-dB accuracy at 10-kHz, 100-kHz, and 1-MHz offset frequencies. In addition to the method used for phase-noise prediction, the potential for wideband tuning of this oscillator topology is analytically investigated. The measured phase noise of the oscillator is -102 dBc/Hz at 100-kHz offset from a 8.6-GHz carrier frequency for drain voltage and current of Vd = 15 V amd Id = 40 mA.

oscillator

Cyclo-stationary noise

phase noise

low-frequency (LF) noise

GaN HEMT

monolithic microwave integrated circuit (MMIC)

Författare

Szhau Lai

Gigahertzcentrum

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Dan Kuylenstierna

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Gigahertzcentrum

Mikael Hörberg

Gigahertzcentrum

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Niklas Rorsman

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Gigahertzcentrum

Iltcho Angelov

Gigahertzcentrum

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Kristoffer Andersson

Gigahertzcentrum

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Herbert Zirath

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Gigahertzcentrum

IEEE Transactions on Microwave Theory and Techniques

0018-9480 (ISSN) 15579670 (eISSN)

Vol. 61 11 3916-3926 6612757

Styrkeområden

Informations- och kommunikationsteknik

Nanovetenskap och nanoteknik

Ämneskategorier (SSIF 2011)

Fysik

DOI

10.1109/tmtt.2013.2282131

Mer information

Senast uppdaterat

2022-04-05