Sn-3.0Ag-0.5Cu Nanocomposite Solder Reinforced With Bi2Te3 Nanoparticles
Artikel i vetenskaplig tidskrift, 2015

Nanocomposite solders are regarded as one of the most promising interconnect materials for the high-density electronic packaging due to their high mechanical strength and fine microstructure. However, the developments of nanocomposite solders have been limited by the inadequate compatibility between nanoparticles and solder matrix with respect to density, hardness, coefficient of thermal expansion, and surface activity. The compatibility issue will lead to a huge loss of nanoparticles from the solder matrix after the reflow soldering process. The thermal fatigue resistance of solder joint will also become degraded. Therefore, aiming to solve this problem, a novel nanocomposite solder consisting of Bi2Te3 semiconductor nanoparticles and Sn-3.0Ag-0.5Cu (SAC305) solder is presented. The effect of nanoparticles on the viscosity of solder paste and the void content of solder bump was first studied. Then, a series of analysis on the composition and microstructure of the solder bump were completed using transmission electron microscopy, X-ray diffraction, inductively coupled plasma-mass spectrometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The survival rate of nanoparticles in the solder bump after reflow soldering process reaches as high as 80%. The refined microstructure was observed from the cross section of the nanocomposite solders. The shear test showed that the average mechanical strength of SAC305 solder after the addition of Bi2Te3 nanoparticles was higher. Meanwhile, no thermal fatigue resistance degradation was detected in the nanocomposite solder after 1000 thermal cycles in the range of -40 degrees C to 115 degrees C.

Nanocomposite solders

Bi2Te3 nanoparticles

Sn-3.0Ag-0.5Cu

Författare

Si Chen

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Xin Luo

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Di Jiang

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

L. Ye

SHT Smart High-Tech

Michael Edwards

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Johan Liu

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

IEEE Transactions on Components, Packaging and Manufacturing Technology

2156-3950 (ISSN)

Vol. 5 1186-1196

Ämneskategorier

Nanoteknik

DOI

10.1109/tcpmt.2015.2446497