Nitrogen Incorporation in GaNAs Layers Grown by Molecular Beam Epitaxy
Artikel i vetenskaplig tidskrift, 2006

GaNAs/GaAs quantum wells with high N concentrations, grown by molecular beam epitaxy, have been investigated by secondary-ion mass spectrometry (SIMS), high resolution x-ray diffraction (XRD), and photoluminescence (PL) measurements. The substitutional N concentration in an 18 nm thick strained GaNAs layer varies from 1.4% to 5.9% when the growth rate is reduced from 1 to 0.2 µm/h. By further reducing the growth rate, more N can be incorporated but relaxation occurs. Both the total N concentration, deduced from SIMS measurements, and the substitutional N concentration, deduced from XRD measurements, increase with reduced growth rate. By comparing the SIMS and XRD results, we found that a large amount of N was not in substitutional position when the substitutional N concentration is high (>4%). The experimental results also show that there is no detectable change of total and substitutional N concentrations, within the instrument resolutions, after rapid thermal annealing at 700 °C for 30 s. However, PL measurements show a strong blueshift of the emission wavelength after annealing and the PL intensity increases by more than one order of magnitude.


Qing Xiang Zhao

Göteborgs universitet

Shu Min Wang

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Mahdad Sadeghi

Chalmers, Mikroteknologi och nanovetenskap, Nanotekniklaboratoriet

Anders Larsson

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Milan Friesel

Göteborgs universitet

Magnus Willander

Göteborgs universitet

Applied Physics Letters

0003-6951 (ISSN) 1077-3118 (eISSN)

Vol. 89 3 031907- 031907





Mer information

Senast uppdaterat