The evidence for open and closed exocytosis as the primary release mechanism
Artikel i vetenskaplig tidskrift, 2016

Exocytosis is the fundamental process by which cells communicate with each other. The events that lead up to the fusion of a vesicle loaded with chemical messenger with the cell membrane were the subject of a Nobel Prize in 2013. However, the processes occurring after the initial formation of a fusion pore are very much still in debate. The release of chemical messenger has traditionally been thought to occur through full distention of the vesicle membrane, hence assuming exocytosis to be all or none. In contrast to the all or none hypothesis, here we discuss the evidence that during exocytosis the vesicle-membrane pore opens to release only a portion of the transmitter content during exocytosis and then close again. This open and closed exocytosis is distinct from kiss- and-run exocytosis, in that it appears to be the main content released during regular exocytosis. The evidence for this partial release via open and closed exocytosis is presented considering primarily the quantitative evidence obtained with amperometry.

adrenal chromaffin cells

dense-core vesicles

frog neuromuscular-junction

single synaptic vesicles

peritoneal mast-cells

transmitter release

quantal size

kiss-and-run

fusion pore

regulated exocytosis

Författare

Lin Ren

Kemi och kemiteknik, Kemi och biokemi, Analytisk kemi

Lisa Mellander

Göteborgs universitet

Jacqueline Keighron

Kemi och kemiteknik, Kemi och biokemi, Analytisk kemi

Ann-Sofie Cans

Kemi och kemiteknik, Kemi och biokemi, Analytisk kemi

Michael Kurczy

Kemi och kemiteknik, Kemi och biokemi, Analytisk kemi

I. Svir

A. Oleinick

C. Amatore

Andrew Ewing

Kemi och kemiteknik, Kemi och biokemi, Analytisk kemi

Quarterly Reviews of Biophysics

0033-5835 (ISSN) 1469-8994 (eISSN)

Vol. 49

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1017/s0033583516000081