Graphene field-effect transistors with high extrinsic fT and fmax
Artikel i vetenskaplig tidskrift, 2019

In this work, we report on the performance of graphene field-effect transistors (GFETs) in which the extrinsic transit frequency (fT) and maximum frequency of oscillation (fmax) showed improved scaling behavior with respect to the gate length (Lg). This improvement was achieved by the use of high-quality graphene in combination with successful optimization of the GFET technology, where extreme low source/drain contact resistances were obtained together with reduced parasitic pad capacitances. GFETs with gate lengths ranging from 0.5 μm to 2 μm have been characterized, and extrinsic fT and fmax frequencies of up to 34 GHz and 37 GHz, respectively, were obtained for GFETs with the shortest gate lengths. Simulations based on a small-signal equivalent circuit model are in good agreement with the measured data. Extrapolation predicts extrinsic fT and fmax values of approximately 100 GHz at Lg=50 nm. Further optimization of the GFET technology enables fmax values above 100 GHz, which is suitable for many millimeter wave applications.

field-effect transistor

transit frequency

maximum frequency of oscillation

graphene

scaling

Författare

Marlene Bonmann

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Muhammad Asad

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Xinxin Yang

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Andrey Generalov

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Andrei Vorobiev

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Luca Banszerus

RWTH Aachen University

Christoph Stampfer

RWTH Aachen University

Martin Otto

Advanced Microelectronic Center Aachen (AMICA)

Daniel Neumaier

Advanced Microelectronic Center Aachen (AMICA)

Jan Stake

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

IEEE Electron Device Letters

0741-3106 (ISSN) 15580563 (eISSN)

Vol. 40 1 131-134 8552417

Styrkeområden

Informations- och kommunikationsteknik

Nanovetenskap och nanoteknik

Infrastruktur

Kollberglaboratoriet

Nanotekniklaboratoriet

Ämneskategorier (SSIF 2011)

Fysik

Elektroteknik och elektronik

Nanoteknik

DOI

10.1109/LED.2018.2884054

Mer information

Senast uppdaterat

2023-02-16