An iterative Newton's method for output-feedback LQR design for large-scale systems with guaranteed convergence
Paper i proceeding, 2019

The paper proposes a novel iterative output-feedback control design procedure, with necessary and sufficient stability conditions, for linear time-invariant systems within the linear quadratic regulator (LQR) framework. The proposed iterative method has a guaranteed convergence from an initial Lyapunov matrix, obtained for any stabilizing state-feedback gain, to a stabilizing output-feedback solution. Another contribution of the proposed method is that it is computationally much more tractable then algorithms in the literature, since it solves only a Lyapunov equation at each iteration step. Therefore, the proposed algorithm succeed in high dimensional problems where other, state-of-the-art methods fails. Finally, numerical examples illustrate the effectiveness of the proposed method.

Newton's method

optimal controller

Large-scale systems

Output-feedback

Linear Quadratic Regulator

Författare

Adrian Ilka

Chalmers, Elektroteknik, System- och reglerteknik, Mekatronik

Nikolce Murgovski

Chalmers, Elektroteknik, System- och reglerteknik, Mekatronik

Jonas Sjöberg

Chalmers, Elektroteknik, System- och reglerteknik, Mekatronik

17th European Control Conference
Naples, Italy,

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Signalbehandling

Mer information

Senast uppdaterat

2019-03-01