On the use of equivalence classes for optimal and sub-optimal bin covering
Paper i proceeding, 2019

Bin covering is an important optimization problem in many industrial fields, such as packaging, recycling, and food processing. The problem concerns a set of items, each with its own value, that are to be collected into bins in such a way that the total value of each bin, as measured by the sum of its item values, is not lower than a target value. The optimization problem concerns maximizing the number of bins. This is a combinatorial NP-hard problem, for which true optimal solutions can only be calculated in specific cases, such as when restricted to a small number of items. To get around this problem, many suboptimal approaches exist. This paper describes a formulation of the bin covering that allows to find the true optimum for a rather large number of items, over 1000. Also presented is a suboptimal solution, which is compared to the true optimum and found to come within less than 10% of the optimum.

Författare

Sabino Francesco Roselli

Chalmers, Elektroteknik, System- och reglerteknik

Fredrik Hagebring

Chalmers, Elektroteknik, System- och reglerteknik

Sarmad Riazi

Chalmers, Elektroteknik, System- och reglerteknik

Martin Fabian

Chalmers, Elektroteknik, System- och reglerteknik

Knut Åkesson

Chalmers, Elektroteknik, System- och reglerteknik

IEEE International Conference on Automation Science and Engineering

21618070 (ISSN) 21618089 (eISSN)

Vol. 2019-August 1004-1009 8843323
978-172810355-6 (ISBN)

15th IEEE International Conference on Automation Science and Engineering, CASE 2019
Vancouver, Canada,

Engineering Tool Chain for Efficient and Iterative Development of Smart Factories (ENTOC)

VINNOVA (2016-02716), 2016-09-01 -- 2019-08-31.

Styrkeområden

Produktion

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Matematisk analys

DOI

10.1109/COASE.2019.8843323

Mer information

Senast uppdaterat

2020-09-21